Theorem Sheet Math 136

4.5

A matrix that can be obtained by performing a *single* ERO on the identity matrix is called an **elementary matrix**.

Proposition 4.5.3

Let $A \in M_{m \times n}(\mathbb{F})$ and suppose that a single ERO is performed on it to produce matrix B. Suppose, also, that we perform the same ERO on the matrix I_m to produce the elementary matrix E. Then

$$B = EA$$
.

Corollary 4.5.4

Let $A \in M_{m \times n}(\mathbb{F})$ and suppose that a finite number of EROs, numbered 1 through k, are performed on A to produce a matrix B. Let E_i denote the elementary matrix corresponding to the ith ERO $(1 \le i \le k)$ applied to I_m . Then

$$B = E_k \dots E_2 E_1 A.$$

4.6

Definition 4.6.1 Invertible Matrix

We say that an $n \times n$ matrix A is **invertible** if there exist $n \times n$ matrices B and C such that $AB = CA = I_n$.

Proposition 4.6.2

(Equality of Left and Right Inverses)

Let $A \in M_{n \times n}(\mathbb{F})$. If there exist matrices B and C in $M_{n \times n}(\mathbb{F})$ such that $AB = CA = I_n$, then B = C.

Theorem 4.6.3

(Left Invertible Iff Right Invertible)

For $A \in M_{n \times n}(\mathbb{F})$, there exists an $n \times n$ matrix B such that $AB = I_n$ if and only if there exists an $n \times n$ matrix C such that $CA = I_n$.

Theorem Sheet Math 136

Definition 4.6.4
Inverse of a Matrix

If an $n \times n$ matrix A is invertible, we refer to the matrix B such that $AB = I_n$ as the **inverse** of A. We denote the inverse of A by A^{-1} . The inverse of A satisfies

$$AA^{-1} = A^{-1}A = I_n.$$

REMARK

The above results tell us that, in order to verify that the matrix B is the inverse of A, it is sufficient to verify that $AB = I_n$. We do not need to also verify that $BA = I_n$.

Theorem 4.6.7

(Invertibility Criteria – First Version)

Let $A \in M_{n \times n}(\mathbb{F})$. The following three conditions are equivalent:

- (a) A is invertible.
- (b) rank(A) = n.
- (c) $RREF(A) = I_n$.

Proposition 4.6.8

(Algorithm for Checking Invertibility and Finding the Inverse)

The following algorithm allows you to determine whether an $n \times n$ matrix A is invertible, and if it is, the algorithm will provide the inverse of A.

- 1. Construct a super-augmented matrix $[A \mid I_n]$.
- 2. Find the RREF, $[R \mid B]$, of $[A \mid I_n]$.
- 3. If $R \neq I_n$, conclude that A is not invertible. If $R = I_n$, conclude that A is invertible, and that $A^{-1} = B$.

Proposition 4.6.13

(Inverse of a 2×2 Matrix)

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if $ad - bc \neq 0$. Furthermore, if $ad - bc \neq 0$, then

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Linear Transformation

Definition 5.1.1

Function Determined by a Matrix Let $A \in M_{m \times n}(\mathbb{F})$. The function determined by the matrix A is the function

$$T_A \colon \mathbb{F}^n \to \mathbb{F}^m$$

defined by

$$T_A(\vec{x}) = A\vec{x}.$$

Theorem 5.1.4

(Function Determined by a Matrix is Linear)

Let $A \in M_{m \times n}(\mathbb{F})$ and let T_A be the function determined by the matrix A. Then T_A is linear; that is, for any \overrightarrow{x} , $\overrightarrow{y} \in \mathbb{F}^n$ and any $c \in \mathbb{F}$, the following two properties hold.

(a)
$$T_A(\vec{x} + \vec{y}) = T_A(\vec{x}) + T_A(\vec{y})$$

(b)
$$T_A(c\vec{x}) = cT_A(\vec{x})$$

5.2

Definition 5.2.1

Linear Transformation We say that the function $T: \mathbb{F}^n \to \mathbb{F}^m$ is a **linear transformation** (or **linear mapping**) if, for any $\vec{x}, \vec{y} \in \mathbb{F}^n$ and any $c \in \mathbb{F}$, the following two properties hold.

- 1. $T(\overrightarrow{x} + \overrightarrow{y}) = T(\overrightarrow{x}) + T(\overrightarrow{y})$ (called **linearity over addition**).
- 2. $T(c\vec{x}) = cT(\vec{x})$ (called linearity over scalar multiplication).

We refer to \mathbb{F}^n here as the **domain** of T and \mathbb{F}^m as the **codomain** of T, as we would for any function.

Proposition 5.2.2

(Alternate Characterization of a Linear Transformation)

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a function. Then T is a linear transformation if and only if for any $\overrightarrow{x}, \overrightarrow{y} \in \mathbb{F}^n$ and any $c \in \mathbb{F}$,

$$T(c\overrightarrow{x} + \overrightarrow{y}) = cT(\overrightarrow{x}) + T(\overrightarrow{y}).$$

Proposition 5.2.3

(Zero Maps to Zero)

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Then

$$T(\overrightarrow{0}_{\mathbb{F}^n}) = \overrightarrow{0}_{\mathbb{F}^m}.$$

Definition 5.3.1 Range

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. We define the **range** of T, denoted Range(T), to be the set of all outputs of T. That is,

Range
$$(T) = \{T(\overrightarrow{x}) : \overrightarrow{x} \in \mathbb{F}^n\}.$$

The range of T is a subset of \mathbb{F}^m .

Proposition 5.3.2

(Range of a Linear Transformation)

Let $A \in M_{m \times n}(\mathbb{F})$, and let $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ be the linear transformation determined by A.

$$Range(T_A) = Col(A)$$
.

REMARK (Connection to Systems of Linear Equations)

We have already seen in Proposition 4.1.2 (Consistent System and Column Space) that the system of linear equations $A\vec{x} = \vec{b}$ has a solution if and only if $\vec{b} \in \text{Col}(A)$.

We can now write

$$A\overrightarrow{x} = \overrightarrow{b}$$
 is consistent if and only if $\overrightarrow{b} \in \text{Range}(T_A)$.

Definition 5.3.5 Onto

We say that the transformation $T \colon \mathbb{F}^n \to \mathbb{F}^m$ is **onto** (or **surjective**) if Range $(T) = \mathbb{F}^m$.

Corollary 5.3.6

(Onto Criteria)

Let $A \in M_{m \times n}(\mathbb{F})$ and let T_A be the linear transformation determined by the matrix A. The following statements are equivalent.

4

- (a) T_A is onto.
- (b) $Col(A) = \mathbb{F}^m$.
- (c) rank(A) = m.

Definition 5.4.1 Kernel

Let $T \colon \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. We define the **kernel** of T, denoted $\operatorname{Ker}(T)$, to be the set of inputs of T whose output is zero. That is,

$$\operatorname{Ker}(T) = \left\{ \overrightarrow{x} \in \mathbb{F}^n \colon T(\overrightarrow{x}) = \overrightarrow{0}_{\mathbb{F}^m} \right\}.$$

The kernel of T is a subset of \mathbb{F}^n .

Proposition 5.4.2

(Kernel of a Linear Transformation)

Let $A \in M_{m \times n}(\mathbb{F})$ and let $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ be the linear transformation determined by A. Then

$$Ker(T_A) = Null(A).$$

Definition 5.4.3 One-to-One

We say that the transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ is **one-to-one** (or **injective**) if whenever $T(\vec{x}) = T(\vec{y})$ then $\vec{x} = \vec{y}$.

REMARK

Notice that the statement

For all
$$\vec{x}, \vec{y} \in \mathbb{F}^n$$
, if $T(\vec{x}) = T(\vec{y})$ then $\vec{x} = \vec{y}$

is logically equivalent to its contrapositive

For all
$$\vec{x}, \vec{y} \in \mathbb{F}^n$$
, if $\vec{x} \neq \vec{y}$ then $T(\vec{x}) \neq T(\vec{y})$

Thus, one-to-one linear transformations have the nice property that they map distinct elements of \mathbb{F}^n to distinct elements of \mathbb{F}^m .

Proposition 5.4.4

(One-to-One Test)

Let $T \colon \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Then

T is one-to-one if and only if $Ker(T) = \{\overrightarrow{0}_{\mathbb{F}^n}\}.$

Corollary 5.4.5

(One-to-One Criteria)

Let $A \in M_{m \times n}(\mathbb{F})$ and let T_A be the linear transformation determined by the matrix A. The following statements are equivalent.

- (a) T_A is one-to-one.
- (b) $\operatorname{Null}(A) = \{\vec{0}_{\mathbb{F}^n}\}.$
- (c) $\operatorname{nullity}(A) = 0$.
- (d) rank(A) = n.

Theorem 5.4.7

(Invertibility Criteria – Second Version)

Let $A \in M_{n \times n}(\mathbb{F})$ be a square matrix and let T_A be the linear transformation determined by the matrix A. The following statements are equivalent.

- (a) A is invertible.
- (b) T_A is one-to-one.
- (c) T_A is onto.
- (d) Null(A) = $\{\vec{0}\}\$. That is, the only solution to the homogeneous system $A\vec{x} = \vec{0}$ is the trivial solution $\vec{x} = \vec{0}$.
- (e) $\operatorname{Col}(A) = \mathbb{F}^n$. That is, for every $\overrightarrow{b} \in \mathbb{F}^n$, the system $A\overrightarrow{x} = \overrightarrow{b}$ is consistent.
- (f) $\operatorname{nullity}(A) = 0$.
- (g) rank(A) = n.
- (h) RREF(A) = I_n .

5.5

Example 5.5.1

Let us examine the consequences of linearity in the special case when $\mathbb{F}^n = \mathbb{F}^m = \mathbb{F}^2$. Thus suppose that $T \colon \mathbb{F}^2 \to \mathbb{F}^2$ is a linear mapping and let $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be a vector in \mathbb{F}^2 . Then

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_2 \end{bmatrix}\right)$$

$$= T\left(x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

$$= x_1 T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + x_2 T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) \quad \text{(by linearity)}$$

$$= \begin{bmatrix} T(\overrightarrow{e_1}) \ T(\overrightarrow{e_2}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} T(\overrightarrow{e_1}) \ T(\overrightarrow{e_2}) \end{bmatrix} \overrightarrow{x}.$$

This shows us that the actual effect of the linear transformation can be replicated by the introduction of a matrix $[T(\overrightarrow{e_1}) \ T(\overrightarrow{e_2})]$.

In addition, this matrix $[T(\vec{e_1}) \ T(\vec{e_2})]$ has columns which are constructed by applying T to the basis vectors $\vec{e_1}$ and $\vec{e_2}$ in \mathbb{F}^2 . This means that if we know what the linear transformation does to just these two (standard basis) vectors, then we can determine what it does to all vectors in \mathbb{F}^2 .

Finally, the actual value of $T(\vec{x})$ can be computed by matrix multiplication of this matrix $\left[T(\vec{e_1})\ T(\vec{e_2})\right]$ by the component vector \vec{x} . This result extends to higher dimensions.

Definition 5.5.2 Standard Matrix

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. We define the **standard matrix** of T, denoted by $[T]_{\mathcal{E}}$, to be $m \times n$ matrix whose columns are the images under T of the vectors in the standard basis of \mathbb{F}^n :

$$[T]_{\mathcal{E}} = \begin{bmatrix} T(\overrightarrow{e_1}) & T(\overrightarrow{e_2}) & \cdots & T(\overrightarrow{e_n}) \end{bmatrix}$$

$$= \begin{bmatrix} T \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{pmatrix} T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \end{pmatrix} \cdots T \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \end{pmatrix} \end{bmatrix}.$$

Theorem 5.5.3

(Every Linear Transformation Is Determined by a Matrix)

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation and let $[T]_{\mathcal{E}}$ be the standard matrix of T. Then for all $\vec{x} \in \mathbb{F}^n$,

$$T(\overrightarrow{x}) = [T]_{\mathcal{E}} \overrightarrow{x}$$

That is, $T = T_{[T]_{\mathcal{E}}}$ is the linear transformation determined by the matrix $[T]_{\mathcal{E}}$.

Proposition 5.5.4

Let $T \colon \mathbb{R} \to \mathbb{R}$ be a linear transformation. Then there is a real number $m \in \mathbb{R}$ such that T(x) = mx for all $x \in \mathbb{R}$.

Proposition 5.5.5

(Properties of a Standard Matrix)

Let $A \in M_{m \times n}(\mathbb{F})$, let $T_A : \mathbb{F}^n \to \mathbb{F}^m$ be the linear transformation determined by A, and let $T : \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Then

- (a) $T_{[T]_{\mathcal{E}}} = T$.
- (b) $[T_A]_{\mathcal{E}} = A$.
- (c) T is onto if and only if $rank([T]_{\mathcal{E}}) = m$.
- (d) T is one-to-one if and only if $rank([T]_{\mathcal{E}}) = n$.

$$\operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v}) = \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2} \overrightarrow{w}.$$

$$\operatorname{perp}_{\overrightarrow{w}}(\overrightarrow{v}) = \overrightarrow{v} - \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v}).$$

$$R_{\theta}(\vec{x}) = R_{\theta} \begin{pmatrix} r \cos \phi \\ r \sin \phi \end{pmatrix}$$

$$= \begin{bmatrix} r \cos(\phi + \theta) \\ r \sin(\phi + \theta) \end{bmatrix}$$

$$= \begin{bmatrix} r(\cos \phi \cos \theta - \sin \phi \sin \theta) \\ r(\sin \phi \cos \theta + \cos \phi \sin \theta) \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta (r \cos \phi) - \sin \theta (r \sin \phi) \\ \sin \theta (r \cos \phi) + \cos \theta (r \sin \phi) \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta \cos \theta \end{bmatrix} \begin{bmatrix} r \cos \phi \\ r \sin \phi \end{bmatrix}$$

$$= A\vec{x},$$

where $A = \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Since we were able to express R_{θ} in the form of a matrix-vector product, it must be the case that R_{θ} is a linear transformation.

$$\operatorname{refl}_{\overrightarrow{w}}(\overrightarrow{v}) = \overrightarrow{v} - 2\operatorname{perp}_{\overrightarrow{w}}(\overrightarrow{v}).$$

5.7

Definition 5.7.1

Composition of Linear Transformations Let $T_1: \mathbb{F}^n \to \mathbb{F}^m$ and $T_2: \mathbb{F}^m \to \mathbb{F}^p$ be linear transformations. We define the function $T_2 \circ T_1: \mathbb{F}^n \to \mathbb{F}^p$ by

$$(T_2 \circ T_1)(\overrightarrow{x}) = T_2(T_1(\overrightarrow{x})).$$

The function $T_2 \circ T_1$ is called the **composite function** of T_2 and T_1 .

Proposition 5.7.2

(Composition of Linear Transformations Is Linear)

Let $T_1: \mathbb{F}^n \to \mathbb{F}^m$ and $T_2: \mathbb{F}^m \to \mathbb{F}^p$ be linear transformations. Then $T_2 \circ T_1$ is a linear transformation.

Proposition 5.7.3

(The Standard Matrix of a Composition of Linear Transformations)

Let $T_1: \mathbb{F}^n \to \mathbb{F}^m$ and $T_2: \mathbb{F}^m \to \mathbb{F}^p$ be linear transformations. Then the standard matrix of $T_2 \circ T_1$ is equal to the product of standard matrices of T_2 and T_1 . That is,

$$[T_2 \circ T_1]_{\mathcal{E}} = [T_2]_{\mathcal{E}} [T_1]_{\mathcal{E}}.$$

Definition 5.7.6

Identity
Transformation

The linear transformation $\mathrm{id}_n \colon \mathbb{F}^n \to \mathbb{F}^n$ such that $\mathrm{id}_n(\overrightarrow{x}) = \overrightarrow{x}$ for all $\overrightarrow{x} \in \mathbb{F}^n$ is called the **identity transformation**.

EXERCISE

Show that the standard matrix $[\mathrm{id}_n]_{\mathcal{E}}$ of id_n is the identity matrix I_n .

Definition 5.7.7 T^p

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ and let p > 1 be an integer. We then define the p^{th} power of T, denoted by T^p , inductively by

 $T^p = T \circ T^{p-1}.$

We also define $T^0 = id_n$.

Corollary 5.7.8

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear transformation and let p > 1 be an integer. Then the standard matrix of T^p is the p^{th} power of the standard matrix of T. That is,

$$[T^p]_{\mathcal{E}} = ([T]_{\mathcal{E}})^p \,.$$

Determinants

6.1

If $A \in M_{1\times 1}(\mathbb{F})$, then the **determinant of** A, denoted by $\det(A)$, is:

$$\det(A) = a_{11}.$$

If $A \in M_{2\times 2}(\mathbb{F})$, then the **determinant of** A, denoted by $\det(A)$, is:

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}.$$

Definition 6.1.4 $(i,j)^{th}$ Submatrix, $(i,j)^{th}$ minor

Let $A \in M_{n \times n}(\mathbb{F})$. The $(i, j)^{th}$ submatrix of A, denoted by $M_{ij}(A)$, is the $(n-1) \times (n-1)$ matrix obtained from A by removing the i^{th} row and the j^{th} column from A. The determinant of $M_{ij}(A)$ is known as the $(i, j)^{th}$ minor of A.

Definition 6.1.6
Determinant of an $n \times n$ matrix

Let $A \in M_{n \times n}(\mathbb{F})$ for $n \geq 2$. We define the **determinant** function, det : $M_{n \times n}(\mathbb{F}) \to \mathbb{F}$, by

$$\det(A) = \sum_{j=1}^{n} a_{1j}(-1)^{1+j} \det(M_{1j}(A)).$$

Proposition 6.1.10

 $(i^{th}$ Row Expansion of the Determinant)

Let $A \in M_{n \times n}(\mathbb{F})$ with $n \ge 2$ and let $i \in \{1, ..., n\}$. Then

$$\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij}(A)).$$

Proposition 6.1.12

(jth Column Expansion of the Determinant)

Let $A \in M_{n \times n}(\mathbb{F})$ with $n \ge 2$ and let $j \in \{1, ..., n\}$. Then

$$\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij}(A)).$$

Proposition 6.1.15

(Easy Determinants)

Let $A \in M_{n \times n}(\mathbb{F})$ be a square matrix.

- (a) If A has a row consisting only of zeros, then $\det A = 0$.
- (b) If A has a column consisting only of zeros, then $\det A = 0$.

(c) If
$$A = \begin{bmatrix} a_{11} & * & * & \cdots & * \\ 0 & a_{22} & * & \cdots & * \\ 0 & 0 & a_{33} & \cdots & * \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$
 is upper triangular, then $\det A = a_{11}a_{22}\cdots a_{nn}$.

Corollary 6.1.16

The determinant of the $n \times n$ identity matrix is 1, that is, $\det(I_n) = 1$.

Proposition 6.1.17

Let $A \in M_{n \times n}(\mathbb{F})$. Then $\det(A) = \det(A^T)$.

Theorem 6.2.1

(Effect of EROs on the Determinant)

Let $A \in M_{n \times n}(\mathbb{F})$.

- (a) (Row swap) If B is obtained from A by interchanging two rows, then det(B) = -det(A).
- (b) (Row scale) If B is obtained from A by multiplying a row by $m \neq 0$, then $\det(B) = m \det(A)$.
- (c) (Row addition) If B is obtained from A by adding a non-zero multiple of one row to another row, then $\det(B) = \det(A)$.

Corollary 6.2.3

Let $A \in M_{n \times n}(\mathbb{F})$. If A has two identical rows (or two identical columns), then $\det(A) = 0$.

Corollary 6.2.4

(Determinants of Elementary Matrices)

For each part below, let E be an elementary matrix of the indicated type.

- (a) (Row swap) det(E) = -1.
- (b) (Row scale) det(E) = m (if E is obtained from I_n by multiplying a row by $m \neq 0$).
- (c) (Row addition) det(E) = 1.

Corollary 6.2.5

(Determinant After One ERO)

Let $A \in M_{n \times n}(\mathbb{F})$ and suppose we perform a single ERO on A to produce the matrix B.

Assume that the corresponding elementary matrix is E. Then

$$\det(B) = \det(E) \det(A).$$

Proof: Combine Theorem 6.2.1 (Effect of EROs on the Determinant) and Corollary 6.2.4 (Determinants of Elementary Matrices).

Corollary 6.2.6

(Determinant After k EROs)

Let $A \in M_{n \times n}(\mathbb{F})$ and suppose we perform a sequence of k EROs on the matrix A to obtain the matrix B.

Suppose that the elementary matrix corresponding to the *i*th ERO is E_i , so that

$$B = E_k \cdots E_2 E_1 A.$$

Then

$$\det(B) = \det(E_k \cdots E_2 E_1 A) = \det(E_k) \cdots \det(E_2) \det(E_1) \det(A).$$

6.3

Theorem 6.3.1

(Invertible iff the Determinant is Non-Zero)

Let $A \in M_{n \times n}(\mathbb{F})$. Then A is invertible if and only if $\det(A) \neq 0$.

Proposition 6.3.3

(Determinant of a Product)

Let $A, B \in M_{n \times n}(\mathbb{F})$. Then $\det(AB) = \det(A) \det(B)$.

Example 6.3.4

Let $A, B \in M_{n \times n}(\mathbb{F})$. Prove that AB is invertible if and only if BA is invertible.

Solution:

AB is invertible iff $det(AB) \neq 0$ (Theorem 6.3.1 (Invertible iff the Determinant is Non-Zero

iff $det(A) det(B) \neq 0$ (Proposition 6.3.3 (Determinant of a Product))

iff $det(B) det(A) \neq 0$

iff $det(BA) \neq 0$ (Proposition 6.3.3)

iff BA is invertible. (Theorem 6.3.1)

Corollary 6.3.5

Let
$$A, B \in M_{n \times n}(\mathbb{F})$$
. Then $\det(AB) = \det(BA)$.

Here is another useful observation that can be proved using similar ideas.

Corollary 6.3.6

(Determinant of Inverse)

Let $A \in M_{n \times n}(\mathbb{F})$ be invertible. Then $\det(A^{-1}) = \frac{1}{\det(A)}$.

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Definition 6.4.1 Cofactor

Let
$$A \in M_{n \times n}(\mathbb{F})$$
. The $(i, j)^{th}$ cofactor of A , denoted by $C_{ij}(A)$, is defined by

$$C_{ij}(A) = (-1)^{i+j} \det(M_{ij}(A)).$$

Definition 6.4.2 Adjugate of a Matrix

Let $A \in M_{n \times n}(\mathbb{F})$. The **adjugate of** A, denoted by $\mathrm{adj}(A)$, is the $n \times n$ matrix whose $(i,j)^{th}$ entry is

$$(\operatorname{adj}(A))_{ij} = C_{ji}(A).$$

That is, the adjugate of A is the transpose of the matrix of cofactors of A.

Theorem 6.4.5

Let $A \in M_{n \times n}(\mathbb{F})$. Then

$$A \operatorname{adj}(A) = \operatorname{adj}(A) A = \det(A) I_n.$$

Corollary 6.4.6

(Inverse by Adjugate)

Let $A \in M_{n \times n}(\mathbb{F})$. If $\det(A) \neq 0$, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Proposition 6.5.1

(Cramer's Rule)

Let $A \in M_{n \times n}(\mathbb{F})$ and consider the equation $A\vec{x} = \vec{b}$, where $\vec{b} \in \mathbb{F}^n$ and $\det(A) \neq 0$.

If we construct B_j from A by replacing the j^{th} column of A by the column vector \overrightarrow{b} , then the solution \overrightarrow{x} to the equation

$$A\vec{x} = \vec{b}$$

is given by

$$x_j = \frac{\det(B_j)}{\det(A)}, \text{ for all } j = 1, \dots, n.$$

Example 6.5.2 Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$
 . Use Cramer's Rule to solve

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix} \vec{x} = \begin{bmatrix} -2 \\ 3 \\ -4 \end{bmatrix}.$$

Solution: We saw in Example 6.2.7 that

$$\det\left(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}\right) = -3.$$

We evaluate the following determinants using the indicated EROs.

$$\det(B_1) = \det \begin{bmatrix} -2 & 2 & 3 \\ 3 & 5 & 6 \\ -4 & 8 & 10 \end{bmatrix} = \det \begin{bmatrix} -2 & 2 & 3 \\ 0 & 8 & \frac{21}{2} \\ 0 & 4 & 4 \end{bmatrix} = 20. \qquad \begin{cases} R_2 \to \frac{3}{2}R_1 + R_2 \\ R_3 \to -2R_1 + R_3 \end{cases}$$

$$\det(B_2) = \det \begin{bmatrix} 1 & -2 & 3 \\ 4 & 3 & 6 \\ 7 & -4 & 10 \end{bmatrix} = \det \begin{bmatrix} 1 & -2 & 3 \\ 0 & 11 & -6 \\ 0 & 10 & -11 \end{bmatrix} = -61. \quad \begin{cases} R_2 \to -4R_1 + R_2 \\ R_3 \to -7R_1 + R_3 \end{cases}$$

$$\det(B_3) = \det\begin{bmatrix} 1 & 2 & -2 \\ 4 & 5 & 3 \\ 7 & 8 & -4 \end{bmatrix} = \det\begin{bmatrix} 1 & 2 & -2 \\ 0 & -3 & 11 \\ 0 & -6 & 10 \end{bmatrix} = 36. \qquad \begin{cases} R_2 \to -4R_1 + R_2 \\ R_3 \to -7R_1 + R_3 \end{cases}$$

Thus,

$$\vec{x} = -\frac{1}{3} \begin{bmatrix} 20\\ -61\\ 36 \end{bmatrix}.$$

Proposition 6.6.1 (Area of Parallelogram)

Let
$$\overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $\overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ be vectors in \mathbb{R}^2 .

The area of the parallelogram with sides \overrightarrow{v} and \overrightarrow{w} is $\left| \det \left(\begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \right) \right|$.

Eigen Values and Diagonalization

Definition 7.1.5

Eigenvector, Eigenvalue and Eigenpair Let $A \in M_{n \times n}(\mathbb{F})$. A non-zero vector \overrightarrow{x} is an **eigenvector of** A **over** \mathbb{F} if there exists a scalar $\lambda \in \mathbb{F}$ such that

$$A \vec{x} = \lambda \vec{x}$$
.

The scalar λ is then called an **eigenvalue of** A **over** \mathbb{F} , and the pair (λ, \vec{x}) is an **eigenpair** of A **over** \mathbb{F} .

Definition 7.2.1

Eigenvalue Equation or Eigenvalue Problem Let $A \in M_{n \times n}(\mathbb{F})$. We refer to the equation

$$A \vec{x} = \lambda \vec{x}$$
 or $(A - \lambda I) \vec{x} = \vec{0}$

as the eigenvalue equation for the matrix A over \mathbb{F} . It is also sometimes referred to as the eigenvalue problem.

Definition 7.2.2

Characteristic Polynomial and Characteristic Equation Let $A \in M_{n \times n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$. The characteristic polynomial of A, denoted by $C_A(\lambda)$, is

$$C_A(\lambda) = \det(A - \lambda I).$$

The characteristic equation of A is

$$C_A(\lambda) = 0.$$

Proposition 7.3.1

Let $A \in M_{n \times n}(\mathbb{F})$. Then A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Definition 7.3.2

Trace

Let $A \in M_{n \times n}(\mathbb{F})$. We define the **trace** of A by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

That is, the trace of a square matrix is the sum of its diagonal entries.

Proposition 7.3.4

(Features of the Characteristic Polynomial)

Let $A \in M_{n \times n}(\mathbb{F})$ have characteristic polynomial $C_A(\lambda) = \det(A - \lambda I)$. Then $C_A(\lambda)$ is a degree n polynomial in λ of the form

$$C_A(\lambda) = c_n \lambda^n + c_{n-1} \lambda^{(n-1)} + \dots + c_1 \lambda + c_0,$$

where

(a)
$$c_n = (-1)^n$$
,

(b)
$$c_{n-1} = (-1)^{(n-1)} \operatorname{tr}(A)$$
, and

(c)
$$c_0 = \det(A)$$
.

Proposition 7.3.6

(Characteristic Polynomial and Eigenvalues over C)

Let $A \in M_{n \times n}(\mathbb{F})$ have characteristic polynomial

$$C_A(\lambda) = c_n \lambda^n + c_{n-1} \lambda^{n-1} + \dots + c_1 \lambda + c_0,$$

and n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ (possibly repeated) in \mathbb{C} . Then

(a)
$$c_{n-1} = (-1)^{(n-1)} \sum_{i=1}^{n} \lambda_i$$
, and

(b)
$$c_0 = \prod_{i=1}^n \lambda_i$$
.

Note that if A has repeated eigenvalues over \mathbb{C} , then we include each eigenvalue in the list $\lambda_1, \lambda_2, ..., \lambda_n$ as many times as its corresponding linear factor appears in the characteristic polynomial $C_A(\lambda)$.

Corollary 7.3.7

(Eigenvalues and Trace/Determinant)

Let $A \in M_{n \times n}(\mathbb{F})$ have n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ (possibly repeated) in \mathbb{C} . Show that:

(a)
$$\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A).$$

(b)
$$\prod_{i=1}^{n} \lambda_i = \det(A).$$

Proposition 7.5.1

(Linear Combinations of Eigenvectors)

Let $c, d \in \mathbb{F}$ and suppose that (λ_1, \vec{x}) and (λ_1, \vec{y}) are eigenpairs of a matrix A over \mathbb{F} with the same eigenvalue λ_1 . If $c\vec{x} + d\vec{y} \neq \vec{0}$, then $(\lambda_1, c\vec{x} + d\vec{y})$ is also an eigenpair for A with eigenvalue λ_1 .

Definition 7.5.3 Eigenspace

Let $A \in M_{n \times n}(\mathbb{F})$ and let $\lambda \in \mathbb{F}$. The **eigenspace of** A **associated with** λ , denoted by $E_{\lambda}(A)$, is the solution set to the system $(A - \lambda I)\vec{x} = \vec{0}$ over \mathbb{F} . That is,

$$E_{\lambda}(A) = \text{Null}(A - \lambda I).$$

If the choice of A is clear, we abbreviate this as E_{λ} .

Definition 7.6.2 Similar

Let $A, B \in M_{n \times n}(\mathbb{F})$. We say that A is similar to B over \mathbb{F} if there exists an invertible matrix $P \in M_{n \times n}(\mathbb{F})$ such that $A = PBP^{-1}$.

Proposition 7.6.5

Let $A, B \in M_{n \times n}(\mathbb{F})$. If A and B are similar over \mathbb{F} , then they have the same characteristic polynomial and the same eigenvalues in \mathbb{F} .

Corollary 7.6.6

Let $A, B \in M_{n \times n}(\mathbb{F})$. If A and B are similar over \mathbb{F} , then:

- (a) det(A) = det(B).
- **(b)** tr(A) = tr(B).

Definition 7.6.7 Diagonalizable Matrix

Let $A \in M_{n \times n}(\mathbb{F})$. We say that A is **diagonalizable over** \mathbb{F} if it is similar over \mathbb{F} to a diagonal matrix $D \in M_{n \times n}(\mathbb{F})$; that is, if there exists an invertible matrix $P \in M_{n \times n}(\mathbb{F})$ such that $P^{-1}AP = D$. We say that the matrix P **diagonalizes** A.

Proposition 7.6.9

(Diagonalizable $\implies n$ Eigenvalues)

Let $A \in M_{n \times n}(\mathbb{F})$. If A is diagonalizable over \mathbb{F} , then the characteristic polynomial of A has n roots (possibly with repetition) in \mathbb{F} .

Moreover, if P diagonalizes A, then the diagonal entries of $D = P^{-1}AP$ are the eigenvalues of A.

Proposition 7.6.12

$(n \text{ Distinct Eigenvalues} \implies \text{Diagonalizable})$

Let $A \in M_{n \times n}(\mathbb{F})$ have n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ in \mathbb{F} , let $(\lambda_1, \overrightarrow{v_1}), \ldots, (\lambda_n, \overrightarrow{v_n})$ be corresponding eigenpairs over \mathbb{F} , and let $P = [\overrightarrow{v_1} \cdots \overrightarrow{v_n}]$. Then

- (a) P is invertible, and
- **(b)** $P^{-1}AP = D = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n).$

Subspaces and bases

Theorem Sheet Math 136

8.1

Definition 8.1.1 Subspace

A subset V of \mathbb{F}^n is called a **subspace of** \mathbb{F}^n if the following properties are all satisfied.

- 1. $\overrightarrow{0} \in V$.
- 2. For all \vec{x} , $\vec{y} \in V$, $\vec{x} + \vec{y} \in V$ (closure under addition).
- 3. For all $\vec{x} \in V$ and $c \in \mathbb{F}$, $c\vec{x} \in V$ (closure under scalar multiplication).

Proposition 8.1.2

(Examples of Subspaces)

- (a) $\{\vec{0}\}\$ and \mathbb{F}^n are subspaces of \mathbb{F}^n .
- (b) If $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ is a subset of \mathbb{F}^n , then $\mathrm{Span}\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ is a subspace of \mathbb{F}^n .
- (c) If $A \in M_{m \times n}(\mathbb{F})$, then the solution set to the homogeneous system $A\overrightarrow{x} = \overrightarrow{0}$ is a subspace of \mathbb{F}^n . (Equivalently, Null(A) is a subspace of \mathbb{F}^n .)

Proposition 8.1.3

(More Examples of Subspaces)

- (a) If $A \in M_{m \times n}(\mathbb{F})$, then $\operatorname{Col}(A)$ is a subspace of \mathbb{F}^m .
- (b) If $T \colon \mathbb{F}^n \to \mathbb{F}^m$ is a linear transformation, then the range of T, Range(T), is a subspace of \mathbb{F}^m .
- (c) If $T: \mathbb{F}^n \to \mathbb{F}^m$ is a linear transformation, then the kernel of T, $\operatorname{Ker}(T)$, is a subspace of \mathbb{F}^n .
- (d) If $A \in M_{n \times n}(\mathbb{F})$ and if $\lambda \in \mathbb{F}$, then the eigenspace E_{λ} is a subspace of \mathbb{F}^n .

Proposition 8.1.4

(Subspace Test)

Let V be a subset of \mathbb{F}^n . Then V is a subspace of \mathbb{F}^n if and only if

- (a) V is non-empty, and
- **(b)** for all \vec{x} , $\vec{y} \in V$ and $c \in \mathbb{F}$, $c \vec{x} + \vec{y} \in V$.

Definition 8.2.3 Linear Dependence

We say that the vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k} \in \mathbb{F}^n$ are **linearly dependent** if there exists scalars $c_1, c_2, \dots, c_k \in \mathbb{F}$, not all zero, such that $c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_k\overrightarrow{v_k} = \overrightarrow{0}$.

If $U = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$, then we say that the set U is a **linearly dependent set** (or simply that U is **linearly dependent**) to mean that the vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}$ are linearly dependent.

Definition 8.2.4

Linear Independence, Trivial Solution We say that the vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k} \in \mathbb{F}^n$ are **linearly independent** if there do not exist scalars $c_1, c_2, \dots, c_k \in \mathbb{F}$, not all zero, such that $c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_k\overrightarrow{v_k} = \overrightarrow{0}$.

Equivalently we say that $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k} \in \mathbb{F}^n$ are **linearly independent** if the only solution to the equation

$$c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k} = \overrightarrow{0}$$

is the **trivial solution** $c_1 = c_2 = \cdots = c_k = 0$.

If $U = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$, then we say that the set U is a **linearly independent set** (or simply that U is **linearly independent**) to mean that the vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}$ are linearly independent.

Definition 8.2.6 Basis

Let V be a subspace of \mathbb{F}^n and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ be a finite set of vectors contained in V. We say that \mathcal{B} is a **basis for** V if

- 1. \mathcal{B} is linearly independent, and
- 2. $V = \operatorname{Span}(\mathcal{B})$.

Proposition 8.3.1

(Linear Dependence Check)

- (a) The vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}$ are linearly dependent if and only if one of the vectors can be written as a linear combination of some of the other vectors.
- (b) The vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}$ are linearly independent if and only if

$$c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k} = \overrightarrow{0} \quad (c_i \in \mathbb{F}) \quad \text{implies} \quad c_1 = \dots = c_k = 0.$$

Proposition 8.3.2

Let $S \subseteq \mathbb{F}^n$.

(a) If $\overrightarrow{0} \in S$, then S is linearly dependent.

196

Chapter 8 Subspaces and Bases

- (b) If $S = \{\vec{x}\}\$ contains only one vector, then S is linearly dependent if and only if $\vec{x} = \vec{0}$.
- (c) If $S = \{\vec{x}, \vec{y}\}$ contains only two vectors, then S is linearly dependent if and only if one of the vectors is a multiple of the other.

Proposition 8.3.6

(Pivots and Linear Independence)

Let $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n . Let $A = [\overrightarrow{v_1} \ \overrightarrow{v_2} \ \cdots \ \overrightarrow{v_k}]$ be the $n \times k$ matrix whose columns are the vectors in S.

Suppose that rank(A) = r and A has pivots in columns q_1, q_2, \dots, q_r .

Let $U = \{\overrightarrow{v_{q_1}}, \overrightarrow{v_{q_2}}, \dots, \overrightarrow{v_{q_r}}\}$, the set of columns of A that correspond to the pivot columns labelled above. Then

- (a) S is linearly independent if and only if r = k.
- (b) U is linearly independent.
- (c) If \overrightarrow{v} is in S but not in U then the set $\{\overrightarrow{v_{q_1}},...,\overrightarrow{v_{q_r}},\overrightarrow{v}\}$ is linearly dependent.
- (d) $\operatorname{Span}(U) = \operatorname{Span}(S)$.

Corollary 8.3.7

(Bound on Number of Linearly Independent Vectors)

Let $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ be a set of k vectors in \mathbb{F}^n . If n < k, then S is linearly dependent.

8.4 Spanning Set

Theorem 8.4.1

(Every Subspace Has a Spanning Set)

Let V be a subspace of \mathbb{F}^n . Then there exist vectors $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k} \in V$ such that

$$V = \operatorname{Span}\{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}.$$

Proposition 8.4.2

(Span of Subset)

Let V be a subspace of \mathbb{F}^n and let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\} \subseteq V$. Then $\mathrm{Span}(S) \subseteq V$.

Proposition 8.4.6

(Spans \mathbb{F}^n iff Rank is n)

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n and let $A = [\overrightarrow{v_1} \cdots \overrightarrow{v_k}]$ be the matrix whose columns are the vectors in S. Then

 $\operatorname{Span}(S) = \mathbb{F}^n$ if and only if $\operatorname{rank}(A) = n$.

8.5 Basis

Theorem 8.5.1

(Every Subspace Has a Basis)

Let V be a subspace of \mathbb{F}^n . Then V has a basis.

$\begin{array}{c} \textbf{Definition 8.5.2} \\ \textbf{Standard Basis for} \\ \mathbb{F}^n \end{array}$

In \mathbb{F}^n , let \overrightarrow{e}_i represent the vector whose i^{th} component is 1 with all other components 0. The set $\mathcal{E} = \{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$ is called the **standard basis for** \mathbb{F}^n .

Proposition 8.5.3

(Size of Basis for \mathbb{F}^n)

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n . If S is a basis for \mathbb{F}^n , then k = n.

Proposition 8.5.4

(*n* Vectors in \mathbb{F}^n Span iff Independent)

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ be a set of n vectors in \mathbb{F}^n . Then S is linearly independent if and only if $\mathrm{Span}(S) = \mathbb{F}^n$.

REMARK

There are two problems we might encounter when trying to obtain a basis for \mathbb{F}^n :

- (a) We might have a set of vectors $S \subseteq \mathbb{F}^n$ with the property that $\mathrm{Span}(S) = \mathbb{F}^n$, but the set contains more than n vectors which is too many to be a basis. In this case, S will be linearly dependent. We may apply Proposition 8.3.6 (Pivots and Linear Independence) to produce a subset of S that is linearly independent, but still spans \mathbb{F}^n . This subset will be a basis for \mathbb{F}^n .
- (b) We might have a set of vectors $S \subseteq \mathbb{F}^n$ that is linearly independent, but that contains fewer than n vectors which is too few to be a basis. In this case, $\operatorname{Span}(S) \neq \mathbb{F}^n$. The problem here is to figure out which vectors to add to S to make it $\operatorname{span} \mathbb{F}^n$. One possible approach is to add all n standard basis vectors to S, obtaining a larger set S'. Then certainly $\operatorname{Span}(S') = \mathbb{F}^n$, but now S' is too large to be a basis. This brings us back to (a).

8.6 basis for col(A) and Null(A)

Proposition 8.6.1

(Basis for Col(A))

Let $A = \begin{bmatrix} \overrightarrow{a_1} \cdots \overrightarrow{a_n} \end{bmatrix} \in M_{m \times n}(\mathbb{F})$ and suppose that RREF(A) has pivots in columns q_1, \ldots, q_r , where r = rank(A). Then $\{\overrightarrow{a_{q_1}}, \ldots, \overrightarrow{a_{q_r}}\}$ is a basis for Col(A).

Proposition 8.6.5

(Basis for Null(A))

Let $A \in M_{m \times n}(\mathbb{F})$ and consider the homogeneous linear system $A\overrightarrow{x} = \overrightarrow{0}$. Suppose that, after applying the Gauss–Jordan Algorithm, we obtain k free parameters so that the solution set to this system is given by

$$Null(A) = \{t_1 \overrightarrow{x_1} + \dots + t_k \overrightarrow{x_k} \colon t_1, \dots, t_k \in \mathbb{F}\}.$$

Here k = nullity(A) = n - rank(A) and the parameters t_i and the vectors $\vec{x_i}$ for $1 \le i \le k$ are obtained using the method outlined in Section 3.7.

Then $\{\vec{x_1}, \dots, \vec{x_k}\}$ is a basis for Null(A).

8.7 Dimension

Theorem 8.7.2

(Dimension is Well-Defined)

Let V be a subspace of \mathbb{F}^n . If $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \dots, \overrightarrow{w_\ell}\}$ are bases for V, then $k = \ell$.

Definition 8.7.3 Dimension

The number of elements in a basis for a subspace V of \mathbb{F}^n is called the **dimension** of V. We denote this number by $\dim(V)$.

Proposition 8.7.5

(Bound on Dimension of Subspace)

Let V be a subspace of \mathbb{F}^n . Then $\dim(V) \leq n$.

Proposition 8.7.8

(Rank and Nullity as Dimensions)

Let $A \in M_{m \times n}(\mathbb{F})$. Then

- (a) rank(A) = dim(Col(A)), and
- (b) $\operatorname{nullity}(A) = \dim(\operatorname{Null}(A)).$

Theorem 8.7.9

(Rank-Nullity Theorem)

Let $A \in M_{m \times n}(\mathbb{F})$. Then

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A)$$

= $\operatorname{dim}(\operatorname{Col}(A)) + \operatorname{dim}(\operatorname{Null}(A))$.

8.8 Coordinates

Theorem 8.8.1

(Unique Representation Theorem)

Let V be a subspace of \mathbb{F}^n and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ be a basis for V. Then, for every vector $\overrightarrow{v} \in V$, there exist *unique* scalars $c_1, c_2, \dots, c_k \in \mathbb{F}$ such that

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots + c_k \overrightarrow{v_k}.$$

Definition 8.8.3 Coordinates and Components

Let V be a subspace of \mathbb{F}^n and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ be a basis for V. Let the vector $\overrightarrow{v} \in V$ have representation

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots + c_k \overrightarrow{v_k} = \sum_{i=1}^k c_i \overrightarrow{v_i}, \qquad (c_i \in \mathbb{F}).$$

We call the scalars c_1, c_2, \ldots, c_k the coordinates (or components) of \overrightarrow{v} with respect to \mathcal{B} , or the \mathcal{B} -coordinates of \overrightarrow{v} .

Definition 8.8.4 Ordered Basis

Let V be a subspace of \mathbb{F}^n . An **ordered basis for** V is a basis $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ for V together with a fixed ordering.

Definition 8.8.6 Coordinate Vector

Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be an ordered basis for the subspace V of \mathbb{F}^n . Let $\overrightarrow{v} \in V$ have coordinates c_1, \dots, c_k with respect to \mathcal{B} , where the ordering of the scalars c_i matches the ordering in \mathcal{B} , that is,

$$\vec{v} = \sum_{i=1}^{k} c_i \vec{v_i}.$$

Then the coordinate vector of \vec{v} with respect to \mathcal{B} (or the \mathcal{B} -coordinate vector of

218

Chapter 8 Subspaces and Bases

\overrightarrow{v}) is the column vector in \mathbb{F}^n

$$[\overrightarrow{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}.$$

Theorem 8.8.8

(Linearity of Taking Coordinates)

Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be an ordered basis for V. Then the function $[\]_{\mathcal{B}}: V \to \mathbb{F}^k$ given by $\overrightarrow{x} \mapsto [\overrightarrow{x}]_{\mathcal{B}}$ is a linear transformation.

Definition 8.8.12

Change-of-Basis Matrix, Change-of-Coordinate Matrix Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \dots, \overrightarrow{w_k}\}$ be ordered bases for a subspace V of \mathbb{F}^n .

The change-of-basis (or change-of-coordinates) matrix from \mathcal{B} -coordinates to \mathcal{C} -coordinates is the $k \times k$ matrix

$$_{\mathcal{C}}[I]_{\mathcal{B}} = \left[[\overrightarrow{v_1}]_{\mathcal{C}}, \dots, [\overrightarrow{v_k}]_{\mathcal{C}} \right]$$

whose columns are the C-coordinates of the vectors $\overrightarrow{v_i}$ in \mathcal{B} .

Similarly, the change-of-basis (or change-of-coordinates) matrix from C-coordinates to B-coordinates is the $k \times k$ matrix

$$_{\mathcal{B}}[I]_{\mathcal{C}} = \left[[\overrightarrow{w_1}]_{\mathcal{B}}, \dots, [\overrightarrow{w_k}]_{\mathcal{B}} \right]$$

whose columns are the \mathcal{B} -coordinates of the vectors $\overrightarrow{w_i}$ in \mathcal{C} .

Proposition 8.8.14

(Changing a Basis)

Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \dots, \overrightarrow{w_k}\}$ be ordered bases for a subspace V of \mathbb{F}^n .

Then $[\vec{x}]_{\mathcal{C}} = {}_{\mathcal{C}}[I]_{\mathcal{B}} \ [\vec{x}]_{\mathcal{B}} \ \text{ and } \ [\vec{x}]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} \ [\vec{x}]_{\mathcal{C}} \ \text{for all } \vec{x} \in V.$

Corollary 8.8.15

Let $\overrightarrow{x} = [\overrightarrow{x}]_{\mathcal{E}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ be a vector in \mathbb{F}^n , where \mathcal{E} is the standard basis for \mathbb{F}^n . If \mathcal{C} is any ordered basis for \mathbb{F}^n , then

$$[\overrightarrow{x}]_{\mathcal{C}} = {}_{\mathcal{C}}[I]_{\mathcal{E}} \ [\overrightarrow{x}]_{\mathcal{E}} \, .$$

Corollary 8.8.16

(Inverse of Change-of-Basis Matrix)

Let \mathcal{B} and \mathcal{C} be two ordered bases of \mathbb{F}^n . Then

$$_{\mathcal{B}}[I]_{\mathcal{C}} _{\mathcal{C}}[I]_{\mathcal{B}} = I_n$$
 and $_{\mathcal{C}}[I]_{\mathcal{B}} _{\mathcal{B}}[I]_{\mathcal{C}} = I_n$.

In other words, $\beta[I]_{\mathcal{C}} = (\beta[I]_{\mathcal{B}})^{-1}$ and $\beta[I]_{\mathcal{B}} = (\beta[I]_{\mathcal{C}})^{-1}$.

Chapter 9

Diagonalization

Definition 9.1.1 B-Matrix of T

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ be an ordered basis for \mathbb{F}^n . We define the \mathcal{B} -matrix of T to be the matrix $[T]_{\mathcal{B}}$ constructed as follows.

$$[T]_{\mathcal{B}} = \begin{bmatrix} [T(\overrightarrow{v_1})]_{\mathcal{B}} & [T(\overrightarrow{v_2})]_{\mathcal{B}} & \cdots & [T(\overrightarrow{v_n})]_{\mathcal{B}} \end{bmatrix}$$

That is, after applying the action of T to each member of \mathcal{B} , we take the \mathcal{B} -coordinate vectors of each of these images to create the columns of $[T]_{\mathcal{B}}$.

Proposition 9.1.2

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ be an ordered basis for \mathbb{F}^n . If $\overrightarrow{v} \in \mathbb{F}^n$, then

$$[T(\overrightarrow{v})]_{\mathcal{B}} = [T]_{\mathcal{B}} \ [\overrightarrow{v}]_{\mathcal{B}}.$$

Proposition 9.1.5

(Similarity of Matrix Representations)

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. Let \mathcal{B} and \mathcal{C} be ordered bases for \mathbb{F}^n . Then

$$[T]_{\mathcal{C}} = _{\mathcal{C}}[I]_{\mathcal{B}} [T]_{\mathcal{B}} _{\mathcal{B}}[I]_{\mathcal{C}} = (_{\mathcal{B}}[I]_{\mathcal{C}})^{-1} [T]_{\mathcal{B}} _{\mathcal{B}}[I]_{\mathcal{C}}$$

and

$$[T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}} \ [T]_{\mathcal{C}} \ {}_{\mathcal{C}}[I]_{\mathcal{B}} = ({}_{\mathcal{C}}[I]_{\mathcal{B}})^{-1} \ [T]_{\mathcal{C}} \ {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

That is, the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ are similar over \mathbb{F} .

Corollary 9.1.6

(Finding the Standard Matrix)

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. Let \mathcal{B} be a basis for \mathbb{F}^n and let \mathcal{E} be the standard basis for \mathbb{F}^n . Then

$$[T]_{\mathcal{E}} = {}_{\mathcal{E}}[I]_{\mathcal{B}} \ [T]_{\mathcal{B}} \ {}_{\mathcal{B}}[I]_{\mathcal{E}} = ({}_{\mathcal{B}}[I]_{\mathcal{E}})^{-1} \ [T]_{\mathcal{B}} \ {}_{\mathcal{B}}[I]_{\mathcal{E}}$$

and

$$[T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{E}} \ [T]_{\mathcal{E}} \ {}_{\mathcal{E}}[I]_{\mathcal{B}} = ({}_{\mathcal{E}}[I]_{\mathcal{B}})^{-1} \ [T]_{\mathcal{E}} \ {}_{\mathcal{E}}[I]_{\mathcal{B}}.$$

9.2

Definition 9.2.1

Eigenvector, Eigenvalue and Eigenpair of a Linear Operator Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. We say that the *non-zero* vector $\vec{x} \in \mathbb{F}^n$ is an **eigenvector** of T to mean that there exists a scalar $\lambda \in \mathbb{F}$ such that

$$T(\vec{x}) = \lambda \vec{x}$$

This equation is called the **eigenvalue equation** or the **eigenvalue problem**. The scalar λ is called an **eigenvalue** of T and the pair (λ, \vec{x}) is called an **eigenpair** of T.

Proposition 9.2.2

(Eigenpairs of T and $[T]_{\mathcal{B}}$)

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let \mathcal{B} be an ordered basis of \mathbb{F}^n . Then (λ, \vec{x}) is an eigenpair of T if and only if $(\lambda, [\vec{x}]_{\mathcal{B}})$ is an eigenpair of the matrix $[T]_{\mathcal{B}}$.

Definition 9.2.4 Diagonalizable

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. We say that T is **diagonalizable over** \mathbb{F} to mean that there exists an ordered basis \mathcal{B} of \mathbb{F}^n such that $[T]_{\mathcal{B}}$ is a diagonal matrix.

Proposition 9.2.5

(Eigenvector Basis Criterion for Diagonalizability)

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. Then T is diagonalizable over \mathbb{F} if and only if there exists an ordered basis $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ of \mathbb{F}^n consisting of eigenvectors of T.

Proposition 9.2.7

(T Diagonalizable iff $[T]_{\mathcal{B}}$ Diagonalizable)

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let \mathcal{B} be an ordered basis of \mathbb{F}^n . Then T is diagonalizable over \mathbb{F} if and only if the matrix $[T]_{\mathcal{B}}$ is diagonalizable over \mathbb{F} .

Corollary 9.2.8

(Eigenvector Basis Criterion for Diagonalizability - Matrix Version)

Let $A \in M_{n \times n}(\mathbb{F})$. Then A is diagonalizable over \mathbb{F} if and only if there exists a basis of \mathbb{F}^n consisting of eigenvectors of A.

opecial case where 11 has n distinct eigenvalues in a . To do so, we have the following results.

Proposition 9.2.10

(Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent)

Let $A \in M_{n \times n}(\mathbb{F})$ have eigenpairs $(\lambda_1, \overrightarrow{v_1}), (\lambda_2, \overrightarrow{v_2}), \dots, (\lambda_k, \overrightarrow{v_k})$, for $1 \le k \le n$.

If the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ are all distinct, then the set of eigenvectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$ is linearly independent.

Let $A \in M_{n \times n}(\mathbb{F})$ have n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ in \mathbb{F} , let $(\lambda_1, \overrightarrow{v_1}), \ldots, (\lambda_n, \overrightarrow{v_n})$ be corresponding eigenpairs over \mathbb{F} , and let $P = [\overrightarrow{v_1} \cdots \overrightarrow{v_n}]$. Then

- (a) P is invertible, and
- (b) $P^{-1}AP = D = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n).$

Definition 9.2.11

Characteristic Polynomial Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let \mathcal{B} be a basis for \mathbb{F}^n . The **characteristic polynomial** of T, $C_T(\lambda)$, is the characteristic polynomial of the matrix $[T]_{\mathcal{B}}$:

$$C_T(\lambda) = C_{[T]_{\mathcal{B}}}(\lambda).$$

Definition 9.2.16

Algebraic Multiplicity Let λ_i be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$. The **algebraic multiplicity** of λ_i , denoted by a_{λ_i} , is the largest positive integer such that $(\lambda - \lambda_i)^{a_{\lambda_i}}$ divides the characteristic polynomial $C_A(\lambda)$.

Section 9.2 Diagonalization of Linear Operators

243

In other words, a_{λ_i} gives the number of times that $(\lambda - \lambda_i)$ terms occur in the fully factorized form of $C_A(\lambda)$.

Definition 9.2.18

Geometric Multiplicity Let λ_i be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$. The **geometric multiplicity** of λ_i , denoted by g_{λ_i} , is the dimension of the eigenspace E_{λ_i} . That is, $g_{\lambda_i} = \dim(E_{\lambda_i})$.

Proposition 9.2.20

(Geometric and Algebraic Multiplicities)

Let λ_i be an eigenvalue of the matrix $A \in M_{n \times n}(\mathbb{F})$. Then

$$1 \leq g_{\lambda_i} \leq a_{\lambda_i}$$
.

Proposition 9.2.21

Let $A \in M_{n \times n}(\mathbb{F})$ with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$. If their corresponding eigenspaces, $E_{\lambda_1}, E_{\lambda_2}, \dots, E_{\lambda_k}$ have bases $\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_k$, then $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \dots \cup \mathcal{B}_k$ is linearly independent.

Theorem 9.2.22 (Diagonalizability Test)

Let $A \in M_{n \times n}(\mathbb{F})$ with characteristic polynomial

$$C_A(\lambda) = (\lambda - \lambda_1)^{a_{\lambda_1}} \cdots (\lambda - \lambda_k)^{a_{\lambda_k}} h(\lambda),$$

where $\lambda_1, \ldots \lambda_k$ are all of the distinct eigenvalues of A in \mathbb{F} with corresponding algebraic multiplicities $a_{\lambda_1} \ldots a_{\lambda_k}$ and $h(\lambda)$ is a polynomial in λ that is irreducible over \mathbb{F} . Then A is diagonalizable over \mathbb{F} if and only $h(\lambda)$ is a constant polynomial and $a_{\lambda_i} = g_{\lambda_i}$, for each $i = 1, \ldots, k$.

Proposition 9.3.1

(Powers of Similar Matrices)

Let $A, B \in M_{n \times n}(\mathbb{F})$ such that $B = P^{-1}AP$ for some invertible matrix $P \in M_{n \times n}(\mathbb{F})$, so that A and B are similar. Then

$$B^k = P^{-1}A^kP.$$

Vector Spaces

We can think of linear algebra as operating in a world with four components.

- A non-empty set of objects, V.
- 2. A field, F.
- 3. An operation, called **addition**, that combines two objects from \mathbb{V} , which we denote by \oplus .
- 4. An operation, called **scalar multiplication**, which combines an object from \mathbb{V} and a scalar from \mathbb{F} , which we denote by \odot .

Definition 10.2.1 Vector Space

A non-empty set of objects, V, is a vector space over a field, F, under the operations of addition, \oplus , and scalar multiplication, \odot , provided the following set of ten axioms are met.

C1. For all $\vec{x}, \vec{y} \in \mathbb{V}, \vec{x} \oplus \vec{y} \in \mathbb{V}$.

(Closure under Addition)

C2. For all $\vec{x} \in \mathbb{V}$ and all $c \in \mathbb{F}$, $c \odot \vec{x} \in \mathbb{V}$.

(Closure under Scalar Multiplication)

V1. For all \vec{x} , $\vec{y} \in \mathbb{V}$, $\vec{x} \oplus \vec{y} = \vec{y} \oplus \vec{x}$.

(Addition is Commutative)

V2. For all $\vec{x}, \vec{y}, \vec{z} \in \mathbb{V}$, $(\vec{x} \oplus \vec{y}) \oplus \vec{z} = \vec{x} \oplus (\vec{y} \oplus \vec{z}) = \vec{x} \oplus \vec{y} \oplus \vec{z}$.

(Addition is Associative)

V3. There exists a vector $\vec{0} \in \mathbb{V}$ such that for all $\vec{x} \in \mathbb{V}$, $\vec{x} \oplus \vec{0} = \vec{0} \oplus \vec{x} = \vec{x}$.

(Additive Identity)

V4. For all $\vec{x} \in \mathbb{V}$, there exists a vector $-\vec{x} \in \mathbb{V}$ such that $\vec{x} \oplus (-\vec{x}) = (-\vec{x}) \oplus \vec{x} = \vec{0}$.

(Additive Inverse)

V5. For all $\vec{x}, \vec{y} \in \mathbb{V}$ and for all $c \in \mathbb{F}$, $c \odot (\vec{x} \oplus \vec{y}) = (c \odot \vec{x}) \oplus (c \odot \vec{y})$.

(Vector Addition Distributive Law)

V6. For all $\vec{x} \in \mathbb{V}$ and for all $c, d \in \mathbb{F}$, $(c+d) \odot \vec{x} = (c \odot \vec{x}) \oplus (d \odot \vec{x})$.

(Scalar Addition Distributive Law)

V7. For all $\vec{x} \in \mathbb{V}$ and for all $c, d \in \mathbb{F}$, $(cd) \odot \vec{x} = c \odot (d \odot \vec{x})$.

(Scalar Multiplication is Associative)

V8. For all $\vec{x} \in \mathbb{V}$, $1 \odot \vec{x} = \vec{x}$.

(Multiplicative Identity)

Definition 10.2.2

A **vector** is an element of a vector space.

Vector

Definition 10.2.6 $L(\mathbb{F}^n, \mathbb{F}^m)$

We use $L(\mathbb{F}^n, \mathbb{F}^m)$ to denote the vector space over \mathbb{F} comprised of all linear transformations $T: \mathbb{F}^n \to \mathbb{F}^m$, with the following addition and scalar multiplication operations for all $x \in \mathbb{F}^n$ and all $c \in \mathbb{F}$ as follows:

$$(T_1 + T_2)(\vec{x}) = T_1(\vec{x}) + T_2(\vec{x}),$$

$$(cT)(\vec{x}) = cT(\vec{x}).$$

Proposition 10.3.1

Let $\mathbb V$ be a vector space over $\mathbb F$. The zero vector in $\mathbb V$ is unique.

Proposition 10.3.2

Let \mathbb{V} be a vector space over \mathbb{F} . Let $\overrightarrow{x} \in \mathbb{V}$. The additive inverse of \overrightarrow{x} is unique.

Proposition 10.3.3

Let \mathbb{V} be a vector space over \mathbb{F} and $\overrightarrow{x} \in \mathbb{V}$. Then

- (a) For all $\vec{x} \in \mathbb{V}$, $0 \odot \vec{x} = \vec{0}$, and
- (b) For all $a \in \mathbb{F}$, $a \odot \overrightarrow{0} = \overrightarrow{0}$.

Proposition 10.3.4

Let \mathbb{V} be a vector space over \mathbb{F} . Let $\overrightarrow{x} \in \mathbb{V}$. Then

$$-\overrightarrow{x} = (-1) \odot \overrightarrow{x}$$
.

Proposition 10.3.5

(Cancellation Law)

Let \mathbb{V} be a vector space over \mathbb{F} . Let $\overrightarrow{x} \in \mathbb{V}$ and $a \in \mathbb{F}$.

If
$$a \odot \vec{x} = \vec{0}$$
, then $a = 0$ or $\vec{x} = \vec{0}$.

Definition 10.4.1
Linear Combination

Let \mathbb{V} be a vector space over \mathbb{F} . Let $\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k} \in \mathbb{V}$ and let $c_1, c_2, \dots, c_k \in \mathbb{F}$. We refer to

$$(c_1 \odot \overrightarrow{v_1}) \oplus (c_2 \odot \overrightarrow{v_2}) \oplus \cdots \oplus (c_k \odot \overrightarrow{v}_k)$$

as a linear combination of $\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}$.

Definition 10.4.4 Span Let \mathbb{V} be a vector space over \mathbb{F} and let $W = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v}_k\} \subseteq \mathbb{V}$. The **span** of W is the set of all linear combinations of elements of W. That is,

$$\mathrm{Span}(W) = \{ (c_1 \odot \overrightarrow{v_1}) \oplus (c_2 \odot \overrightarrow{v_2}) \oplus \cdots \oplus (c_k \odot \overrightarrow{v}_k) \colon c_i \in \mathbb{F}, \ i = 1, \dots, k \}.$$

Definition 10.4.9
Subspace

Let $\mathbb V$ be a vector space over $\mathbb F$ and let $\mathbb U$ be a non-empty subset of $\mathbb V$. We say that $\mathbb U$ is a **subspace** of $\mathbb V$ if $\mathbb U$ is a vector space over $\mathbb F$ using the same addition and scalar multiplication operations as $\mathbb V$.

Theorem 10.4.10

(Subspace Test)

Let $\mathbb V$ be a vector space over $\mathbb F$ and let $\mathbb U$ be a subset of $\mathbb V$. Then $\mathbb U$ is a subspace of $\mathbb V$ if and only if all of the following conditions hold:

- 1. U is non-empty,
- 2. U is closed under addition (C1), and
- 3. U is closed under scalar multiplication (C2).

Proposition 10.4.12

Let \mathbb{V} be a vector space over \mathbb{F} . Let $W = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n}\} \subseteq \mathbb{V}$. Then

- (a) Span (W) is a subspace of \mathbb{V} .
- (b) If \mathbb{U} is a subspace of \mathbb{V} such that $W \subseteq \mathbb{U}$, then $\mathrm{Span}\,(W) \subseteq \mathbb{U}$.

Definition 10.4.15 Linearly Independent, Linearly Dependent

Let \mathbb{V} be a vector space over \mathbb{F} and let $W = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n}\} \subseteq \mathbb{V}$. We say that W is **linearly independent** if the only solution to the equation

$$(a_1 \odot \overrightarrow{w_1}) \oplus (a_2 \odot \overrightarrow{w_2}) \oplus \cdots \oplus (a_n \odot \overrightarrow{w_n}) = \overrightarrow{0}$$

is the trivial solution, $a_1 = a_2 = \cdots = a_n = 0$. Otherwise, we say that W is **linearly dependent**.

Definition 10.4.17

Let \mathbb{V} be a vector space over \mathbb{F} and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\} \subseteq \mathbb{V}$. We say that \mathcal{B} is a **basis** for \mathbb{V} if \mathcal{B} is linearly independent and if $\mathrm{Span}(\mathcal{B}) = \mathbb{V}$.

The basis for the zero vector space, $\{\vec{0}\}\$, is defined to be the empty set \emptyset .

Definition 10.4.20 Dimension, Infinite Dimensional

If $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ is a basis for a vector space \mathbb{V} over \mathbb{F} , then we say the **dimension** of \mathbb{V} is n. We denote this by writing $\dim(V) = n$.

The **dimension** of the zero vector space $\{\vec{0}\}$ is 0.

If $\mathbb V$ does not have a basis with a finite number of vectors in it, then $\mathbb V$ is said to be **infinite-dimensional**.

Theorem 10.4.23

(Unique Representation Theorem)

Let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ be a basis for a vector space \mathbb{V} over \mathbb{F} . Then for every vector $\overrightarrow{v} \in \mathbb{F}^n$, there exist unique scalars $c_1, c_2, \dots, c_n \in \mathbb{F}$ such that $\overrightarrow{v} = c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots + c_n \overrightarrow{v_n}$.

Definition 10.4.24 β -Coordinates, β -Coordinate Vector

Let \mathbb{V} be a vector space over \mathbb{F} and let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ be an ordered basis for \mathbb{V} . Let $\overrightarrow{v} = (c_1 \odot \overrightarrow{v_1}) \oplus (c_2 \odot \overrightarrow{v_2}) \oplus \cdots \oplus (c_n \odot \overrightarrow{v_n})$

272

Chapter 10 Vector Spaces

be the unique representation of \vec{v} as a linear combination of the vectors in \mathcal{B} . The scalars c_1, c_2, \ldots, c_n are referred to as the \mathcal{B} -coordinates of \vec{v} and the vector

$$[\overrightarrow{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix},$$

is known as the \mathcal{B} -coordinate vector or the coordinate vector of \overrightarrow{v} with respect to the basis \mathcal{B} .

Definition 10.4.28 Change-of-Basis Matrix

Let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n}\}$ be two ordered bases for the vector space \mathbb{V} over \mathbb{F} . The **change-of-basis matrix** from \mathcal{B} to \mathcal{C} , denoted by $\mathcal{C}[I]_{\mathcal{B}}$, is the matrix

$$_{\mathcal{C}}[I]_{\mathcal{B}} = \left[[\overrightarrow{v_1}]_{\mathcal{C}}, [\overrightarrow{v_2}]_{\mathcal{C}}, \dots, [\overrightarrow{v_n}]_{\mathcal{C}} \right].$$

Proposition 10.4.29

Let $\mathcal{B} = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \overrightarrow{w_2}, \dots, \overrightarrow{w_n}\}$ be two ordered bases for the vector space \mathbb{V} over \mathbb{F} . Then

$$_{\mathcal{B}}[I]_{\mathcal{C}} = (_{\mathcal{C}}[I]_{\mathcal{B}})^{-1}$$
.