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4.5

A matrix that can be obtained by performing a single ERO on the identity matrix is called

an elementary matrix.

Let A € My, xn(F) and suppose that a single ERO is performed on it to produce matrix B.
Suppose, also, that we perform the same ERO on the matrix I,;, to produce the elementary

matrix E. Then

Proposition 4.5.3

B =FA.

Let A € M, xn(F) and suppose that a finite number of EROs, numbered 1 through k, are
performed on A to produce a matrix B. Let E; denote the elementary matrix corresponding

to the ith ERO (1 < i < k) applied to I;,. Then

Corollary 4.5.4

B =E;...EE A

4.6

We say that an n x n matrix A is invertible if there exist n x n matrices B and C such

that AB =CA = 1I,.

Definition 4.6.1

Invertible Matrix

Proposition 4.6.2  (Equality of Left and Right Inverses)
Let A € My, (F). If there exist matrices B and C' in M, ,,(F) such that AB = CA = I,,,
then B = C.

Theorem 4.6.3 (Left Invertible Iff Right Invertible)
For A € My, (F), there exists an n x n matrix B such that AB = I, if and only if there
exists an n x n matrix C such that CA = I,,.
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Definition 4.6.4 If an n x n matrix A is invertible, we refer to the matrix B such that AB = I, as the
Inverse of a Matrix  inverse of A. We denote the inverse of A by A~!. The inverse of A satisfies

AAt=A1A=1,.

REMARK

The above results tell us that, in order to verify that the matrix B is the inverse of A, it is
sufficient to verify that AB = I,. We do not need to also verify that BA = I,,.

Theorem 4.6.7 (Invertibility Criteria — First Version)

Let A € My, (F). The following three conditions are equivalent:

(a) A is invertible.
(b) rank(A) = n.
(¢) RREF(A) = I,,.

Proposition 4.6.8  (Algorithm for Checking Invertibility and Finding the Inverse)

The following algorithm allows you to determine whether an n x n matrix A is invertible,
and if it is, the algorithm will provide the inverse of A.

1. Construct a super-angmented matrix [A | I,].
2. Find the RREF, [R | B], of [A | L].

3. If R # I,,, conclude that A is not invertible. If R = I,,, conclude that A is invertible,
and that A~! = B.

Proposition 4.6.13  (Inverse of a 2 x 2 Matrix)

ab

LetA:[cd

then

] . Then A is invertible if and only if ad — be # 0. Furthermore, if ad —be # 0,

1 d —b
Al = .
ad — be |:—C ﬂ:|

Linear Transformation

5.1
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Definition 5.1.1  Let A € M, xn(F). The function determined by the matrix A is the function

Function
Determined by a Ty: F* — F™
Matrix

defined by
Ty(2) = AZ.

Theorem 5.1.4  (Function Determined by a Matrix is Linear)
Let A € Myxn(F) and let T be the function determined by the matrix A. Then T4 is

linear; that is, for any ¥, 7/ € F" and any ¢ € F, the following two properties hold.
(a) Ta(T + ) = Ta(T) + Ta(¥)

(b) Ta(eT) = cTa(F)

5.2

Definition 5.2.1  We say that the function 7': F* — F™ is a linear transformation (or linear mapping)

Linear if, for any @, ¥ € F" and any ¢ € F, the following two properties hold.

Transformation

1. T+ ¥)=T(7)+ T(¥) (called linearity over addition).

2. T(e@) = ¢T(7) (called linearity over scalar multiplication).

We refer to F™ here as the domain of T and F™ as the codomain of T', as we would for

any function.

Proposition 5.2.2  (Alternate Characterization of a Linear Transformation)

Let T : F* — F™ be a function. Then T is a linear transformation if and only if for any
T,y € F" and any c € FF,
T(cT +¥) = T(Z) + T(7).

Proposition 5.2.3 (Zero Maps to Zero)

Let T : F" — F™ be a linear transformation. Then

5.3
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Definition 5.3.1  Let T: F" — F™ be a linear transformation. We define the range of T, denoted Range(T),
Range to be the set of all outputs of T. That is,

Range(T) = {T(Z) : ¥ € F"}.

The range of T is a subset of F™,

Proposition 5.3.2  (Range of a Linear Transformation)

Let A € My (F), and let Ta: F® — F™ be the linear transformation determined by A.
Then
Range(T4) = Col(A).

REMARK (Connection to Systems of Linear Equations)

We have already seen in Proposition 4.1.2 (Consistent System and Column Space) that
the system of linear equations A7 = b has a solution if and only if be Col(A).

We can now write

-

AT =T is consistent if and only if b € Range(T'4).

Definition 5.3.5  We say that the transformation T: F* — F™ is onto (or surjective) if Range(T) = F™.
Onto

Corollary 5.3.6 (Onto Criteria)

Let A € M, (F) and let T4 be the linear transformation determined by the matrix A.
The following statements are equivalent.

(a) Ta is onto.
(b) Col(A)=TF.
(c) rank(A) = m.

5.4
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Definition 5.4.1

Kernel

Proposition 5.4.2

Definition 5.4.3

One-to-One

Proposition 5.4.4

Corollary 5.4.5
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Let T: F™ — F™ be a linear transformation. We define the kernel of T', denoted Ker(T'),
to be the set of inputs of T" whose output is zero. That is,

Ker(T) = {1’ eF": T(Z) = HW}.

The kernel of T is a subset of F™.

(Kernel of a Linear Transformation)

Let A € M, «n(F) and let Tia: F® — F™ be the linear transformation determined by A.
Then
Ker(T4) = Null(A).

We say that the transformation T : F* — F™ is one-to-one (or injective) if whenever
T(Z)=T(Y) then T = 7.

REMARK

Notice that the statement

For all #,% € F*, if T(7) = T(¥) then Z =%
is logically equivalent to its contrapositive

For all #, 7 € F", if7 # ¥ then T(Z) # T(Y)

Thus, one-to-one linear transformations have the nice property that they map distinct
elements of F" to distinct elements of F™.

(One-to-One Test)

Let T: F™ — F™ be a linear transformation. Then

T is one-to-one if and only if Ker(T) = {Opn}.

(One-to-One Criteria)

Let A € My xn(F) and let T4 be the linear transformation determined by the matrix A.
The following statements are equivalent.

(a) T4 is one-to-one.
(b) Null(4) = {0z}
(¢) mullity(A) = 0.

(d) rank(A) = n.



Theorem 5.4.7 (Invertibility Criteria — Second Version)

Let A € Myuxn(F) be a square matrix and let Ty be the linear transformation determined
by the matrix A. The following statements are equivalent.

(a) A is invertible.
(b) T4 is one-to-one.
(¢) T is onto.

(d) Null(A) = {0}. That is, the only solution to the homogeneous system AT = 0 is the
trivial solution @ = 0.

(e) Col(A) =F". That is, for every b € F, the system AF = b is consistent.

(f) nullity(A4) = 0.

(g) rank(A) =n.
(h) RREF(A) = I,,.

5.5

Example 5.5.1  Let us examine the consequences of linearity in the special case when F* = F* = F2. Thus

suppose that 7: F? — F2 is a linear mapping and let @ = [zl

r(]) -]+ a)
:T(:cl [é +I2[[1)_)
1 2 H’ZT([?D (by linearity)

} be a vector in F2. Then

= [T(e1) T(e3)] 7.
This shows us that the actual effect of the linear transformation can be replicated by the
introduction of a matrix [T'(€7) T'(e3)].

In addition, this matrix [T(FT) T(F_Q')] has columns which are constructed by applying T to
the basis vectors &, and &5 in F2. This means that if we know what the linear transformation
does to just these two (standard basis) vectors, then we can determine what it does to all
vectors in F2.

Finally, the actual value of T(7) can be computed by matrix multiplication of this matrix
[T(Fﬂ T(F;)] by the component vector 7°. This result extends to higher dimensions.
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Let T': F™ — F™ be a linear transformation. We define the standard matrix of T, denoted
by [T]g, to be m x n matrix whose columns are the images under 7 of the vectors in the

Definition 5.5.2

Standard Matrix
standard basis of F™:

[Tle = [T(&F)

"t!
3

T(e3)
1
0

= |T

Theorem 5.5.3 (Every Linear Transformation Is Determined by a Matrix)

Let T': F™ — F™ be a linear transformation and let [T]¢ be the standard matrix of 7. Then

for all T € F",
T(Z)=[T) ¥

That is, T' = Ty}, is the linear transformation determined by the matrix [T].

Proposition 5.5.4 Let T: R — R be a linear transformation. Then there is a real number m € R such that

T(z) = mx for all z € R.

Proposition 5.5.5 (Properties of a Standard Matrix)
Let A € My (F), let T4 : F® — F™ be the linear transformation determined by A, and let
T:F* — ™ be a linear transformation. Then

(a) T, =T.
(b) [Tale = A
(c) T is onto if and only if rank([T]¢) = m.

(d) T is one-to-one if and only if rank([T]¢) = n.

5.6

projz(v) = Ww
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perpz(7) = U — projz (7).

5

B 7 COS ¢
Ro(Z) = Ry (L’singf)])
_ [rcos(¢+0)
| rsin(¢ +0)
_ [r(cos ¢ cosf —sin ¢ sin 6)
| r(sin¢cos @ + cos ¢ sin 6)
[cos B(r cos ¢) — sin B(r sin ¢)
| sin §(r cos ¢) + cos O(r sin @)

[cos @ — Sinﬁ} [r cos d)]

| sinf cos@ rsin ¢
= A7,
cosf —sinf . . .
vhere A = | . . Since we were able to express Ry in the form of a matrix-
sinf) cos@

rector product, it must be the case that Ry is a linear transformation.

reflz (V)

I
=
|
R
<
]
H
|U
S
|

5.7

Definition 5.7.1  Let T} : F* — F™ and T» : F™ — FP be linear transformations. We define the function
Composition of TyoTy: F" — FP by
i (T2 0 Th)(T) = Ta(T(T))-

Transformations

The function T3 o T} is called the composite function of 7> and T.

Proposition 5.7.2 (Composition of Linear Transformations Is Linear)

Let T7 : F* — F™ and 15 : F™ — P be linear transformations. Then T3 o T is a linear
transformation.
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Proposition 5.7.3 (The Standard Matrix of a Composition of Linear Transformations)

Let T} : F* — F™ and T5 : F"* — [P be linear transformations. Then the standard matrix
of Tb o T1 is equal to the product of standard matrices of T> and Tj. That is,

[TQ o Tﬂ:_‘: = [TQ]E [Tl]g .

Definition 5.7.6  The linear transformation id,,: F* — F" such that id,(?) = 7 for all ¥ € F" is called the

Identity identity transformation .
Transformation

EXERCISE

Show that the standard matrix [id,|g of id,, is the identity matrix I,,.

Definition 5.7.7  Let T: F* — F” and let p > 1 be an integer. We then define the p** power of T, denoted
TP by TP, inductively by
TP =T o TP L.

We also define T° = id,,.

Corollary 5.7.8  Let T': F* — F™ be a linear transformation and let p > 1 be an integer. Then the standard
matrix of T? is the p** power of the standard matrix of T. That is,

[T7)e = ([T]e)?-

Determinants

6.1

Definition 6.1.1  If A € My, (F), then the determinant of A, denoted by det(A), is:

Determinant of a
1x1and 2 x2 det(A) = ay;.
Matrix

If A€ May3(F), then the determinant of A, denoted by det(A), is:

det(A) = aijaz — ajpaz.

Theorem Sheet Math 136



Definition 6.1.4 Let A € Myxn(F). The (i,5)" submatrix of A, denoted by M;;(A), is the (n — 1) x
(i, /)" Submatrix, (n — 1) matrix obtained from A by removing the i** row and the ;" column from A. The
(i, )" minor determinant of M;;(A) is known as the (i, ) minor of A.

Definition 6.1.6 Let A € Mpxn(F) for n > 2. We define the determinant function, det : Muxn(F) — F,

Determinant of an b)’
n x n matrix =

det(A) =) a1j(—1)* det(My;(A)).
i=1

Proposition 6.1.10  (i’® Row Expansion of the Determinant)
Let A € Myn(F) withn > 2 and let i € {1,...,n}. Then

det(A) = Zn:a,;j(—n*ﬂ' det(M;;(A)).
i=1

Proposition 6.1.12  (j* Column Expansion of the Determinant)

Let A € My,xn(F) with n > 2 and let j € {1,...,n}. Then

det(A) = aij(—1)"* det(M,;(A)).

n
i=1

Proposition 6.1.15 (Easy Determinants)

Let A € M,,«,(F) be a square matrix.

(a) If A has a row consisting only of zeros, then det A = 0.

(b) If A has a column consisting only of zeros, then det A = 0.

ﬂ.ll Ed E *
0 ax * --- =
(c) If A= 0 0 azgz--- * |ig upper triangular, then det A = aj1as5 -+« app-
0 0 -+ 0 apn

Corollary 6.1.16  The determinant of the n x n identity matrix is 1, that is, det(I,,) = 1.

Proposition 6.1.17 Let A € M, .,(F). Then det(A) = det(AT).
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Theorem 6.2.1

Corollary 6.2.3

Corollary 6.2.4

Corollary 6.2.5

Corollary 6.2.6
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(Effect of EROs on the Determinant)
Let A € My (F).

(a) (Row swap) If B is obtained from A by interchanging two rows, then det(B) = — det(A).

(b) (Row scale) If B is obtained from A by multiplying a row by m # 0, then
det(B) = mdet(A).

(c) (Row addition) If B is obtained from A by adding a non-zero multiple of one row to

another row, then det(B) = det(A).

Let A € My .n(F). If A has two identical rows (or two identical columns), then det(4) = 0.

(Determinants of Elementary Matrices)

For each part below, let E be an elementary matrix of the indicated type.

(a) (Row swap) det(E) = —1.
(b) (Row scale) det(E) = m (if E is obtained from [, by multiplying a row by m # 0).

(¢) (Row addition) det(E) = 1.

(Determinant After One ERO)
Let A € M, ., (F) and suppose we perform a single ERO on A to produce the matrix B.

Assume that the corresponding elementary matrix is E. Then

det(B) = det(E) det(A).

Proof: Combine Theorem 6.2.1 (Effect of EROs on the Determinant) and Corollary 6.2.4
(Determinants of Elementary Matrices). g

(Determinant After k EROs)

Let A € M,,,,(F) and suppose we perform a sequence of k EROs on the matrix A to obtain
the matrix B.

Suppose that the elementary matrix corresponding to the ith ERO is E;, so that
B=E. - EE,A.

Then
det(B) = det(E}. - - - Eo E1A) = det(Ey) - - - det( Ey) det(Ey ) det(A).

n



6.3

Theorem 6.3.1  (Invertible iff the Determinant is Non-Zero)
Let A € M, .,(F). Then A is invertible if and only if det(A) # 0.

Proposition 6.3.3 (Determinant of a Product)
Let A, B € Myyn(F). Then det(AB) = det(A) det(B).

Example 6.3.4  Let A, B € M,,,,(F). Prove that AB is invertible if and only if BA is invertible.

Solution:

AB is invertible iff det(AB) # 0 (Theorem 6.3.1 (Invertible iff the Determinant is Non-Zert
iff det(A)det(B)#0 (Proposition 6.3.3 (Determinant of a Product))
iff det(B)det(A) #£0
iff det(BA)#£0 (Proposition 6.3.3)
iff BA is invertible.  (Theorem 6.3.1)

Corollary 6.3.5 Let A, B € My «n(F). Then det(AB) = det(BA).

Here is another useful observation that can be proved using similar ideas.

Corollary 6.3.6 (Determinant of Inverse)

Let A € M, (F) be invertible. Then det(A~!) = ﬁ
€

Definition 6.4.1  Let A € Muxn(F). The (i,5)™" cofactor of A, denoted by Cij(A), is defined by

Cofactor

Cii(A) = (1) det(My;(A)).
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Definition 6.4.2 Let A € M,.,(F). The adjugate of A, denoted by adj(A), is the n x n matrix whose
(adj(A))i; = Cji(A).

That is, the adjugate of A is the transpose of the matrix of cofactors of A.

Adjugate of a (i,4)™" entry is
Matrix

Theorem 6.4.5

Corollary 6.4.6

Proposition 6.5.1

Theorem Sheet Math 136
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Example 6.5.2 Let A=

123
45 6

. Use Cramer’s Rule to solve

7810

123
45 6

781

0

Solution: We saw in Example 6.2.7 that

—2

= |3

—4

123
det 45 6 = —3.
7810

We evaluate the following determinants using the indicated EROs.

-22 3 -22 3 Ry — 3R+ Ry
det(Bi)=det | 3 5 6 | =det | 0 82| =20.
—4810 0 44 Rs —» —2R, + R3
[1—2 3] (1 -2 3 " Ry —» —4Ry + Ry
det(By) =det |4 3 6| =det |0 11 —6 | = —61.
[7 —4 10J 10 10 —11J Ry — —TR,+ R;3
122 [1 2 -2 Ry — —4R1 + R»
det(Bs)=det |45 3 | =det |0 -3 11| = 36.
78 —4 [0 —6 10 Rq — —7TRy + Ry
Thus,
20
1
?=—§ —61
© 36

Proposition 6.6.1

(Area of Parallelogram)

The area of the parallelogram with sides ¥ and @ is

Let ¥ = |jvlj| and W = |iw1] be vectors in 2.
vg wa

det (|71 1
vy W '

Eigen Values and Diagonalization
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Definition 7.1.5 Let A € M,.,(F). A non-zero vector T is an eigenvector of A over F if there exists a

Eigenvector, scalar A € F such that
Eigenvalue and AT =)\7
Eigenpair c

The scalar A is then called an eigenvalue of A over F, and the pair (A, ¥) is an eigenpair

of A over F.

Definition 7.2.1 Let A € Muxn(F). We refer to the equation

Eigenvalue . . L, =
Equation or AT =AT o (A-AT =0
Eigenvalue
Problem . . . R )
as the eigenvalue equation for the matrix A over F. 1t is also sometimes referred to

as the eigenvalue problem.

Definition 7.2.2  Let A € Myxn(F) and A € F. The characteristic polynomial of A, denoted by C'4()), is

Characteristic
Polynomial and Ca(A) =det(A — AI).
Characteristic

Equation o . .
q The characteristic equation of A is

Ca(N) = 0.

Proposition 7.3.1  Let A € M,,,(F). Then A is invertible if and only if A = 0 is not an eigenvalue of A.

Definition 7.3.2  Let A € M, .,(F). We define the trace of A by
Trace

That is, the trace of a square matrix is the sum of its diagonal entries.

Theorem Sheet Math 136
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Proposition 7.3.4

Proposition 7.3.6

Corollary 7.3.7

Proposition 7.5.1

Theorem Sheet Math 136

(Features of the Characteristic Polynomial)
Let A € M, y,(F) have characteristic polynomial C'4(\) = det(A — AI). Then C4()\) is a

degree n polynomial in A of the form
Ca(N) = enX™ + a1 A™ D oo 4 1A + 0o,
where
(a) en = (-1)",
(b) cn-1 = (~1)®"Vtr(A), and
(c) co = det(A).

(Characteristic Polynomial and Eigenvalues over C)

Let A € M,,,,(F) have characteristic polynomial
Ca(A) = en X" + cnt A" L+ + 1\ + o,
and n eigenvalues A1, A2, ..., A, (possibly repeated) in C. Then

(a) en_1 = (—1}“"‘”%&, and

i=1

Note that if A has repeated eigenvalues over C, then we include each eigenvalue in the list
A1, Ag, ..., Ap as many times as its corresponding linear factor appears in the characteristic
polynomial C4(A).

(Eigenvalues and Trace/Determinant)
Let A € M,,,..(F) have n eigenvalues Ay.As, ..., A, (possibly repeated) in C. Show that:

(a) DA\ = tr(A).

i=1

(b) ﬁ i = det(A).

i=1

(Linear Combinations of Eigenvectors)

Let ¢,d € F and suppose that (A, T) and (A1, ¥) are eigenpairs of a matrix A over F with
the same eigenvalue A\1. If ¢ +dy # 0, then (A, cT +d7) is also an eigenpair for A with
eigenvalue ;.

16



Definition 7.5.3  Let A € M, ,(F) and let A\ € F. The eigenspace of A associated with ), denoted by
Eigenspace E\(A), is the solution set to the system (A — AJ )E" = 0 over F. That is,

E\(A) = Null(A — X ).

If the choice of A is clear, we abbreviate this as F.

Definition 7.6.2 Let A, B € M, ,,(F). We say that A is similar to B over F if there exists an invertible
Similar matrix P € M, «,(F) such that A = PBP~1,

Proposition 7.6.5 Let A, B € Myx,(F). If A and B are similar over F, then they have the same characteristic
polynomial and the same eigenvalues in F.

Corollary 7.6.6 Let A, B € M,,,.,(F). If A and B are similar over F, then:

(a) det(A) = det(B).
(b) tr(A) =tr(B).

Definition 7.6.7 Let A € Mpxn(F). We say that A is diagonalizable over F if it is similar over F to a
Diagonalizable diagonal matrix D € M,,,(F); that is, if there exists an invertible matrix P € M,,,.,(F)
Matrix such that P~ AP = D. We say that the matrix P diagonalizes A.

Proposition 7.6.9 (Diagonalizable — n Eigenvalues)

Let A € M,,(F). If A is diagonalizable over F, then the characteristic polynomial of A
has n roots (possibly with repetition) in F.

Moreover, if P diagonalizes A, then the diagonal entries of D = P~' AP are the eigenvalues
of A.

Proposition 7.6.12 (n Distinct Eigenvalues = Diagonalizable)

Let A € M,,.,(F) have n distinct eigenvalues Ay, Aa,..., A, in F, let (A, 07),...,(An,70)
be corresponding eigenpairs over F, and let P = [77 -+ 0,]. Then

(a) P is invertible, and

(b) P~'AP = D =diag(\, A2, » An)-

Subspaces and bases
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8.1

Definition 8.1.1
Subspace

Proposition 8.1.2

Proposition 8.1.3

Proposition 8.1.4

8.2

Theorem Sheet Math 136

A subset V' of F™ is called a subspace of F" if the following properties are all satisfied.

1L GeV.
2. Forall ¥, ¥ € V, T+ ¥ € V (closure under addition).

3. Forall ¥ € Vand c € F, ¢¥ € V (closure under scalar multiplication).

(Examples of Subspaces)

(a) {0} and F* are subspaces of F™".
(b) If {v7,v3,...,u¢} is a subset of F™, then Span{vy, 43, ...,0¢} is a subspace of F™,

(c) If A € Myuxn(F), then the solution set to the homogeneous system AT = 0isa
subspace of F". (Equivalently, Null(A) is a subspace of F".)

(More Examples of Subspaces)

(a) If A€ M,,,(F), then Col(A) is a subspace of F™.

(b) If T: F* — F™ is a linear transformation, then the range of T', Range(T), is a subspace
of F™.

(c) I T: F* — F™ is a linear transformation, then the kernel of T, Ker(T'), is a subspace
of F™.

(d) If Ae M, +,(F) and if A € F, then the eigenspace F) is a subspace of F™.

(Subspace Test)
Let V' be a subset of F*. Then V is a subspace of F" if and only if

(a) V is non-empty, and

(b) forall 7,7 €V andc €F, cF+ G € V.

18



Definition 8.2.3

Linear Dependence

Definition 8.2.4

Linear
Independence,
Trivial Solution

Definition 8.2.6

Basis

?roposition 8.3.1

Theorem Sheet Math 136

We say that the vectors v7,93,...,0; € F" are linearly dependent if there exists scalars

€1.¢3,...,ct € F, not all zero, such that ¢;7] + eav3 + -+ + et = 0.

If U = {u1,v3,...,0¢}, then we say that the set U is a linearly dependent set (or
simply that U is linearly dependent) to mean that the vectors o7, v3,. .., 7}, are linearly
dependent.

We say that the vectors 77,73, ..., € F" are linearly independent if there do not exist
scalars 1, c2,...,cp € F, not all zero, such that c1v1 + c202 + ...+ cpvp = 0.

Equivalently we say that v1,72,...,9; € F are linearly independent if the only solution

to the equation
— — — =
c1vl +eovo + ...+ = 0

is the trivial solution ¢y = a3 = -+ = ¢, = (.

IfU = {v,73,..., Ui}, then we say that the set U is a linearly independent set (or

simply that U is linearly independent) to mean that the vectors v1,v3,. . ., Uy are linearly
independent.

Let V' be a subspace of F" and let B = {07, 73,...,7;} be a finite set of vectors contained
in V. We say that B is a basis for V if

1. B is linearly independent, and

2. V = Span(B).

(Linear Dependence Check)

(a) The vectors vy,v3, ..., v are linearly dependent if and only if one of the vectors can
be written as a linear combination of some of the other vectors.

(b) The vectors v1,03, ..., are linearly independent if and only if

Qv+ e =0 (c; €F) implies ¢ =---=¢ =0.

19



Proposition 8.3.2 Let S CF".

(a) If 0 € S, then S is linearly dependent.

196 Chapter 8 Subspaces and Bases

(b) If S = {7} contains only one vector, then S is linearly dependent if and only if T = 0.

(c) If S = {T, 7} contains only two vectors, then S is linearly dependent if and only if
one of the vectors is a multiple of the other.

Proposition 8.3.6  (Pivots and Linear Independence)

Let S = {#1,03,...,7;} be a set of k vectors in F*. Let A = [t_!ft_!g' 'I'__F):] be the n x k
matrix whose columns are the vectors in S.

Suppose that rank(A) = r and A has pivots in columns q1.¢2,...,gr.

Let U = {vg,,Ugas---,Vq, }, the set of columns of A that correspond to the pivot columns
labelled above. Then

(a) S is linearly independent if and only if r = F.

(b) U is linearly independent.

(c) If ¥ is in S but not in U then the set {7,;,..., 7, , ¥} is linearly dependent.

(d) Span (U) = Span (S).

Corollary 8.3.7 (Bound on Number of Linearly Independent Vectors)
Let S = {vi.v3,....7;} be a set of k vectors in F". If n < k, then S is linearly dependent.

8.4 Spanning Set

Theorem 8.4.1 (Every Subspace Has a Spanning Set)
Let V be a subspace of F*. Then there exist vectors vy, ...,7; € V such that

V = Span{vy,..., 05 }-
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Proposition 8.4.2

Proposition 8.4.6

8.5 Basis

Theorem 8.5.1

Definition 8.5.2
Standard Basis for
wr

Proposition 8.5.3

Proposition 8.5.4

Theorem Sheet Math 136

(Span of Subset)
Let V be a subspace of F* and let S = {1, ...,7;} C V. Then Span(S) C V.

(Spans F" iff Rank is n)
Let S = {v1,...,U¢} be a set of k vectors in F" and let A = [171' ’[T):] be the matrix

whose columns are the vectors in §. Then

Span(S) =F" if and only if rank(A) = n.

(Every Subspace Has a Basis)
Let V be a subspace of F". Then V has a basis.

In F", let €; represent the vector whose #" component is 1 with all other components 0.
The set £ = {€7,€3, ..., €, } is called the standard basis for F".

(Size of Basis for F")
Let S = {1,..., 7%} be a set of k vectors in F". If S is a basis for F", then k = n.

(n Vectors in F" Span iff Independent)

Let S = {7,...,7n} be aset of n vectors in F*. Then § is linearly independent if and only if
Span (S) = F".
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REMARK

There are two problems we might encounter when trying to obtain a basis for F™:

(a) We might have a set of vectors S C F™ with the property that Span (S) = F", but the
set contains more than n vectors which is too many to be a basis. In this case, S will be
linearly dependent. We may apply Proposition 8.3.6 (Pivots and Linear Independence)
to produce a subset of S that is linearly independent, but still spans F™. This subset
will be a basis for F".

(b) We might have a set of vectors S C F" that is linearly independent, but that contains
fewer than n vectors which is too few to be a basis. In this case, Span (S) # F". The
problem here is to figure out which vectors to add to S to make it span F". One
possible approach is to add all n standard basis vectors to S, obtaining a larger set S’
Then certainly Span (S’) = F", but now S’ is too large to be a basis. This brings us
back to (a).

8.6 basis for col(A) and Null(A)

Proposition 8.6.1 (Basis for Col(A))

Let A = [Ef e ap ] € My, xn(F) and suppose that RREF(A) has pivots in columns
q1,---,qr, where r = rank(A). Then {ag,,-.-,aq,} is a basis for Col(A).

>roposition 8.6.5 (Basis for Null(A))

Let A € M,x,(F) and consider the homogeneous linear system A7 = 0. Suppose that,
after applying the Gauss-Jordan Algorithm, we obtain k free parameters so that the solution
set to this system is given by

Nl.l]l(A] = {flf.'hf—i---‘—i-tk:ﬂ:: tr, ..., 1k E]F}.

Here k = nullity(A4) = n — rank(A) and the parameters t; and the vectors 7; for 1 <i < k
are obtained using the method outlined in Section 3.7.

Then {Z1,..., 7%} is a basis for Null(A).

8.7 Dimension

Theorem Sheet Math 136
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Theorem 8.7.2 (Dimension is Well-Defined)

Let V be a subspace of F. If B = {&7,...,7;} and C = {wy, ..., w;} are bases for V, then
kE=¢.

Definition 8.7.3  The number of elements in a basis for a subspace V of F" is called the dimension of V.
Dimension We denote this number by dim(V').

Proposition 8.7.5 (Bound on Dimension of Subspace)

Let V' be a subspace of F*. Then dim(V') < n.

Proposition 8.7.8 (Rank and Nullity as Dimensions)
Let A € M,.n(F). Then

(a) rank(A) = dim(Col(A4)), and
(b) nullity(A) = dim(Null(A)).

Theorem 8.7.9 (Rank—Nullity Theorem)
Let A € M,,»«n(F). Then

n = rank(A) + nullity(A)
= dim(Col(A)) 4 dim(Null(A)).

8.8 Coordinates

Theorem 8.8.1 (Unique Representation Theorem)

Let V' be a subspace of F" and let B = {v],73,...,7.} be a basis for V. Then, for every
vector ¥ € V, there exist unique scalars ¢y, ¢s,....¢; € F such that

VT=ciP+Cals+ - +cptg.

Theorem Sheet Math 136
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Definition 8.8.3 Let V be a subspace of F" and let 8 = {91,73,...,0¢} be a basis for V. Let the vector

Coordinates and 7 € V have representation

Components
k
?Zﬂl'ﬁ-'-ﬂzﬁ-i-‘“+%5:=ZC:'5;, (e € F).
i=1
We call the scalars ¢y, ca, ..., ¢, the coordinates (or components) of ¥ with respect

to B, or the B-coordinates of 7.

Definition 8.8.4  Let V be a subspace of F*. An ordered basis for V is a basis B = {97,03,...,0¢} for V
Ordered Basis together with a fixed ordering.

Definition 8.8.6  Let B = {y,...,7;} be an ordered basis for the subspace V of F*. Let ¥ € V have
coordinates ¢y, ..., ¢ with respect to B, where the ordering of the scalars ¢; matches the

ordering in B, that is,

Coordinate Vector

k
= o
v= E Cily.
=1

Then the coordinate vector of ¥ with respect to B (or the B-coordinate vector of

218 Chapter 8 Subspaces and Bases

') is the column vector in F"

(5]
Ca

[F]s =

Theorem 8.8.8 (Linearity of Taking Coordinates)

Let B = {#1,...,03} be an ordered basis for V. Then the function [ ]z : V — F¥ given by
T +—+ [T]p is a linear transformation.
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Definition 8.8.12

Change-of-Basis
Matrix, Change-of-
Coordinate Matrix

Proposition 8.8.14

Corollary 8.8.15

Corollary 8.8.16

Let B = {v1,...,v5} and C = {wyq, ..., w}} be ordered bases for a subspace V of F™.

The change-of-basis (or change-of-coordinates) matrix from B-coordinates to C-
coordinates is the k x k matrix

C[I]BZ [[ﬁ]ﬁﬂﬁ]c]

whose columns are the C-coordinates of the vectors 7; in B.

Similarly, the change-of-basis (or change-of-coordinates) matrix from C-coordinates
to B-coordinates is the k x k matrix

slllc = [[@ils, ..., [@s]

whose columns are the B-coordinates of the vectors w; in C.

(Changing a Basis)
Let B={{,...,0¢} and C = {wi, ..., wr} be ordered bases for a subspace V of F".

Then [T.L“']C = C[I]B [ag and [I"b]g = B[I]C [E]C for all E." e V.

T
Let ¥ = [Z]e = | : | be a vector in F", where £ is the standard basis for F*. If C is any

In
ordered basis for F", then

(Zle =cll]e [Z]¢-

(Inverse of Change-of-Basis Matrix)
Let B and C be two ordered bases of F". Then

sllc cllle=In and cl1s sllec = L.

In other words, 5[I]c = (c[!]s )_1 and ¢[I]s = (B[I]e )_1'

Chapter 9

Diagonalization

Theorem Sheet Math 136
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Definition 9.1.1
B-Matrix of T

Proposition 9.1.2

Proposition 9.1.5

Corollary 9.1.6

9.2

Definition 9.2.1

Eigenvector,
Eigenvalue and
Eigenpair of a

Linear Operator

Theorem Sheet Math 136

Let T: F* — F" be a linear operator and let B = {L_'l', V2. .. L_'.,,:} be an ordered basis for
Fn. We define the B-matrix of 7" to be the matrix [T]gz constructed as follows.

M5 = [T@EDls T@)s - L]

That is, after applying the action of T to each member of B, we take the B-coordinate
vectors of each of these images to create the columns of [T]g.

Let T: F* — F™ be a linear operator and let B = {97, 73,...,7,} be an ordered basis for
F. If ¥ € F*, then
(T(¥)]s = [T]s [V]s-

(Similarity of Matrix Representations)

Let T': F* — F™ be a linear operator. Let B and C be ordered bases for F". Then
[Tle = cll]s (@5 sll]c = (sl7l0) ™" [T]s 5[l

and
[T)5 = sl]e [Te cll)s = (c]8) ™" [T)e [l

That is, the matrices [T]z and [T]¢ are similar over F.

(Finding the Standard Matrix)

Let T: F" — F™ be a linear operator. Let B be a basis for F" and let £ be the standard
basis for F*. Then

[T]e = )5 [T)5 sl = (8l]e) ™" (T8 sl]e

and

[T]s = 81 [Te el]s = ([Il8) " [Te £[]s.

Let T: F* — F" be a linear operator. We say that the non-zero vector ¥ € F" is an
eigenvector of 7" to mean that there exists a scalar A € I such that

T(Z) = AZ.

This equation is called the eigenvalue equation or the eigenvalue problem. The scalar
X is called an eigenvalue of T' and the pair (A, 7) is called an eigenpair of T
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Proposition 9.2.2  (Eigenpairs of 7' and [T1;;)

Let T': F™ — F™ be a linear operator and let B be an ordered basis of F". Then (A, T) is
an eigenpair of 7" if and only if (A, [Z]5) is an eigenpair of the matrix [T]5.

Definition 9.2.4  Let T: F* — F" be a linear operator. We say that T is diagonalizable over F to mean

Diagonalizable that there exists an ordered basis B of F" such that [T is a diagonal matrix.

Proposition 9.2.5 (Eigenvector Basis Criterion for Diagonalizability)

Let 7" : F* — F™" be a linear operator. Then T is diagonalizable over F if and only if there
exists an ordered basis B = {1,73, ..., 7, } of F" consisting of eigenvectors of T'.

Proposition 9.2.7 (7 Diagonalizable iff [T]; Diagonalizable)

Let T: F* — F" be a linear operator and let B be an ordered basis of F". Then T is
diagonalizable over F if and only if the matrix [T]5 is diagonalizable over F.

Corollary 9.2.8 (Eigenvector Basis Criterion for Diagonalizability — Matrix Version)

Let A € Mypxn(F). Then A is diagonalizable over F if and only if there exists a basis of F"

consisting of eigenvectors of A.
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Proposition 9.2.10 (Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Inde-
pendent)

Let A € M,,«,,(F) have eigenpairs (A1, 77), (A2, 93), .- -, (Mg, T), for 1 <k < n.

If the eigenvalues A1, Aa, ..., A are all distinct, then the set of eigenvectors {v1,v3, ..., 05}

is linearly independent.

Let A € Muxn(F) have n distinct eigenvalues Ay, Aa,..., An in F, let (A1, 01),.. ., (An,¥n)
be corresponding eigenpairs over F, and let P = [0y --- 0,]. Then

(a) P is invertible, and

(b) P'AP = D = diag(A1, A2, -+ , M)
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Definition 9.2.11

Characteristic
Polynomial

Definition 9.2.16

Algebraic
Multiplicity

Section 9.2 Diagonalization of Linear Operators

Let T: F* — F" be a linear operator and let B be a basis for F*. The characteristic
polynomial of T, Cp(A), is the characteristic polynomial of the matrix [T];:

C1(A) = Ciryp(A).

Let A be an eigenvalue of A € M, ., (F). The algebraic multiplicity of A;, denoted by
ay,, is the largest positive integer such that (A —\;)%% divides the characteristic polynomial

Ca(A).

243

Definition 9.2.18

Geometric
Multiplicity

Proposition 9.2.20

Proposition 9.2.21

Cheorem 9.2.22

Theorem Sheet Math 136

In other words, ay, gives the number of times that (A—JA;) terms oceur in the fully factorized
form of C4(A).

Let ); be an eigenvalue of A € M,,..,(F). The geometric multiplicity of A;, denoted by
gy, is the dimension of the eigenspace E, . That is, gy, = dim(E},).

(Geometric and Algebraic Multiplicities)
Let A; be an eigenvalue of the matrix A € M,,..,(F). Then

1 E:gli < ay;-

Let A € M,.,(F) with distinct eigenvalues Aj, Ao,...,Ar. If their corresponding
eigenspaces, Ey , Ey,,....Ey, have bases By,Bs,..., By, then B = By U By U --- U By is
linearly independent.

(Diagonalizability Test)
Let A € My xn(F) with characteristic polynomial
CalX) = (A= A1) - (A= Ap)* R(A),

where Aq,... A, are all of the distinct eigenvalues of A in F with corresponding algebraic
multiplicities ay, ...ay, and h(A) is a polynomial in A that is irreducible over F. Then A
is diagonalizable over F if and only h(A) is a constant polynomial and a,, = g,,. for each
i=1,...k
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Proposition 9.3.1  (Powers of Similar Matrices)

Let A, B € Muxn(F) such that B = P~ LAP for some invertible matrix P & My xn(F), so
that A and B are similar. Then

BF = p~1A*p,

Vector Spaces

We can think of linear algebra as operating in a world with four components.
1. A non-empty set of objects, V.
2. A field, F.

3. An operation, called addition, that combines two objects from W, which we denote
by .

4. An operation, called scalar multiplication, which combines an object from ¥V and
a scalar from F, which we denote by .

Theorem Sheet Math 136
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Definition 10.2.1

Vector Space

Definition 10.2.2

Vector

Definition 10.2.6
L(F™ F™)

Theorem Sheet Math 136

A non-empty set of objects, ¥, is a vector space over a field, F, under the operations
of addition, ¢, and scalar multiplication, @, provided the following set of ten axioms
are met.

C1.

C2.

V1.

V2.

V3.

V4.

V5.

Vé.

V7.

V8.

Foral 7,7 eV, T7& 7y V.
(Closure under Addition)

Forall 7eVandallceF,co® V.
(Closure under Scalar Multiplication)

Foral 7,7 eV, Teay=7ya& 7.

(Addition is Commutative)

Forall Z,7,Z eV, (Ta¥)ezZ=28(¥o7)
(Addition is Associative)

Il
8
&
<=l
&
)

There exists a vector 0 € V such that for all @ € V, Td 0=0a7=7.
(Additive Identity)

For all ¥ € V, there exists a vector — % € V such that 7 @ (-F) = (-F) & T = 0.
(Additive Inverse)

Forall ¥, 7 eVand forallceF, co (T2 ¥)=(ceT)a(c@ ).

(Vector Addition Distributive Law)

Forall Te Vandforalle, deF, (e+d) @7 =(cOT)@(do T).
(Scalar Addition Distributive Law)

Forall TeVandforalle, deF, (ed) T =c@ (d@ T).

(Scalar Multiplication is Associative)

—

Forall 7 eV, 107 =7.
(Multiplicative Identity)

A vector is an element of a vector space.

We use L(F™, F'™) to denote the vector space over F comprised of all linear transformations
T :F™ — F™, with the following addition and scalar multiplication operations for all x € F™
and all ¢ € F as follows:

(T +T2) (¥) =11 (T) + T2 (T),
() () = cT(3).
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Proposition 10.3.1  Let V be a vector space over F. The zero vector in V is unique.

Proposition 10.3.2  Let V be a vector space over F. Let ¥ € V. The additive inverse of 7 is unique.
Proposition 10.3.3 Let V be a vector space over F and ¥ € V. Then

(a) Foral TeV,00 % = 0, and
(b) ForallacF,a® 0 = 0.

Proposition 10.3.4 Let V be a vector space over F. Let ¥ € V. Then

_Z=(-1)06Z.

Proposition 10.3.5 (Cancellation Law)
Let V be a vector space over F. Let ¥ € V and a € F.

Ifa@i'za,thena:[]or Z2=0.

Definition 10.4.1  Let V be a vector space over F. Let v1,v3,..., U € V and let ¢1.¢9,...,¢c € F. We refer
Linear Combination to
(c1O)B(2023)D B (e © Vi)

5 5 - — —» —
as a linear combination of vy, v2,..., V.

Definition 10.4.4  Let V be a vector space over F and let W = {#7,93,..., 7x} C V. The span of W is the
Span set of all linear combinations of elements of W. That is,

Span(W)={(c1@t) @ (on)® - & (k@ Ur):aeF, i=1,...,k}.

Definition 10.4.9  Let V be a vector space over F and let U be a non-empty subset of V. We say that U is a

Subspace subspace of V if U is a vector space over F using the same addition and scalar multiplication

operations as V.

Theorem Sheet Math 136
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Theorem 10.4.10

Proposition 10.4.12

Definition 10.4.15

Linearly Independent,
Linearly Dependent

Definition 10.4.17

Basis

Definition 10.4.20

Dimension, Infinite
Dimensional

Theorem 10.4.23
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(Subspace Test)

Let W be a vector space over F and let U be a subset of ¥. Then U is a subspace of V if
and only if all of the following conditions hold:

1. U is non-empty,
2. U is closed under addition (C1), and

3. U is closed under scalar multiplication (C2).

Let V be a vector space over F. Let W = {w7,w3,...,w,} C V. Then

(a) Span (W) is a subspace of V.
(b) If U is a subspace of V such that W C U, then Span (W) C U.

Let V be a vector space over F and let W = {wj,ws,...,w,} C V. We say that W is

linearly independent if the only solution to the equation

(@ 0T) & (0T) & & (@modn) =0

is the trivial solution, a; = as = -+ = a, = 0. Otherwise, we say that W is linearly
dependent.
Let ¥ be a vector space over F and let B = {v1,73,...,0n} € V. We say that B is a basis

for V if B is linearly independent and if Span (B) = V.

The basis for the zero vector space, {ﬁ} is defined to be the empty set @.

If B={v1,...,0,} is a basis for a vector space ¥V over F, then we say the dimension of ¥V
is n. We denote this by writing dim(V') = n.

The dimension of the zero vector space {ﬁ} is 0.

If ¥V does not have a basis with a finite number of vectors in it, then ¥ is said to be
infinite-dimensional.

(Unique Representation Theorem)

Let B = {v1,73,...,Un} be a basis for a vector space V over F. Then for every vector
7 € F", there exist unique scalars ¢1,¢2, ..., cn € F such that T =civi+eczva+-+cn Un.
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Definition 10.4.24  Let V be a vector space over F and let B = {97,73,...,7n} be an ordered basis for V. Let

B-Coordinates, . . . .
B-Coordinate Vector v=(cON)P(cOm) & D (ch ®vn)

272 Chapter 10 Vector Spaces

be the unique representation of ¥ as a linear combination of the vectors in B. The scalars

€1.€2,. ...y are referred to as the B-coordinates of U and the vector
c1
. c2
Vs =
Cn

is known as the B-coordinate vector or the coordinate vector of ¥ with respect to

the basis B.
Definition 10.4.28  Let B = {#1,73,...,7,} and C = {w], w3, ..., W, } be two ordered bases for the vector space
Change-of-Basis WV over F. The change-of-basis matrix from B to C, denoted by ¢[I]g, is the matrix
Matrix
cllls = [[#le, @Bl - [Fe |-
Proposition 10.4.29 Let B= {v1,¥3,...,0n} and C = {1, w3, ..., wn } be two ordered bases for the vector space

WV over F. Then
sl = (c[1]s)".
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